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How do we model these?
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Gaussian processes

@ Gaussian distribution over functions
F(-) ~ N (p(-), K(-, )

@ The values of the function have a joint Gaussian distribution

f(x1) w(x1) K(xi,x1) K(xi,x2) K(x1,x3)
fle)| =N | |n02)],
f(x3) 1(x3)

K(xe,x1) K(x2,x2) K(x2,x3)
@ Given values of the function y = f(X), we can estimate

K(X37 Xl) K(X3,X2) K(X3, X3)

FO) = E{F()ly} = u(x) + KO R [K(%,2)] 7 (y = m(%))
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@ Gaussian process prior for the impulse response

g ~ N(ug(p), Ke(p))

[ne(p)]; = E{eit  [Kg(p)]; = cov{gi. g}
@ Gaussian process prior for the input

w ~ N(,uw(e)a Kw(e))

[MW(G)],' = E{w}, [KW(G)]U = cov {w;, WJ}
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Measurement setup

s

@ The system is stable and LTI

Ynoiseless = W * &

@ The noises are additive, Gaussian, and white

V=w-+n y=wxg-+¢
n ~ N(0,021) e~ N(0,001)
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V=w-+7n
eNN(O a’l)

0,021)

N(
N(g(p), Ke(p))
W~N(uw( ), Kw(0))

10



Inference in uncertain-input models

11



Inference in uncertain-input models

@ Bayesian assumption

g~ Nlug(p), Kg(p))  w ~N(uw(0), Kw(0))

11



Inference in uncertain-input models

@ Bayesian assumption

g~ Nlug(p), Kg(p))  w ~N(uw(0), Kw(0))

@ We would like to have the conditional mean estimates

g =E{g|v,y} w = E{wlv,y}

11



Inference in uncertain-input models

@ Bayesian assumption

g~ Nlug(p), Kg(p))  w ~N(uw(0), Kw(0))

@ We would like to have the conditional mean estimates

g=E{glv.y}  w=E{w|v,y}
@ We do not know the hyperparameters 7 = {p, 0,0

A

g=g(7)

>

= w(7)

2 2
v Oy

!

11



Inference in uncertain-input models

@ Bayesian assumption

g~ Nlug(p), Kg(p))  w ~N(uw(0), Kw(0))

@ We would like to have the conditional mean estimates

g =E{g|v,y} w = E{wlv,y}

@ We do not know the hyperparameters 7 = {p, 0,02, 03 }!

A

g=g(7)

>

)

We need to estimate them from data
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Empirical Bayes

@ We choose the hyperparameters that maximize the marginal
likelihood
7 =argmaxp(y,v;7)
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Empirical Bayes

@ We choose the hyperparameters that maximize the marginal
likelihood
7 =argmaxp(y,v;7)

@ Estimates:

g(7)=E{glv,y; 7} w(7) = E{w|v,y; 7}
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Is it really that simple?

Short answer
Yes

Long answer
Yes, but. . .

@ we need to calculate expected values<— Monte Carlo
@ some distributions are not available in closed form<— Gibbs

@ we need to maximize the marginal likelihood«+— EM
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Calculating the posterior mean

@ We need the posterior means
E{gly,viT} = /gp(g: wly,v;7)dwdg

E {wly,vi} = / wp(g, wly, v: 7) dg dw
The joint distribution is problematic to compute!
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Monte Carlo integration
@ We make a particle approximation of the distribution
1M
Y o~ _z0) w_w
p(g?W|y7VrT)NMZ]-5(g gJ7W w )
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Monte Carlo integration

@ We make a particle approximation of the distribution
1 : .
Pl wly.vim) ~ ;3 8~ 8w = )
J:

@ We approximate the posterior mean

E{gly,v} = /gp(g,W\y, v;7)dwdg

M
~ /g;ﬂz(s(ggw, w— ) dw dg
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Monte Carlo integration

@ We make a particle approximation of the distribution
1 : .
pla. wly,vir) = ;3 dlg — 8w — )

@ We approximate the posterior mean

E{gly,v} = /gp(g,W\y, v;7)dwdg

M
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Monte Carlo integration

@ We make a particle approximation of the distribution
1 : .
pla. wly,vir) = ;3 dlg — 8w — )

@ We approximate the posterior mean

E{gly,v} = /gp(g,W\y, v;7)dwdg

~ e, za D ow— 70 dwdg = — Zgw

@ Similarly

E{wly,v} = /Wp g, wly,v; T)dgdWN—ZW(J)
j=1
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Particle approximation

@ We want samples from a joint distribution

p(g,wly, v; ) < difficult to evaluate!

@ but

p(gly,w; ) < Gaussian!

p(wly,v,g; 1) < Gaussian!
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The Gibbs sampler
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gly,w~N wig, v,y ~ N

g% ~ p(gly, w); p,62),

w kD < p(wly, v, g% 10, 62)

(wk), g9 are samples from p(g, w|y. v; ?)
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Gibbs sampling the Ul model

{(g“”, w%)

wig, v,y ~ N

@) (@,57) @0 (@.59))
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Maximizing the marginal likelihood

o We want to compute the marginal likelihood estimate
7 =arg max p(y,v; 1)
e but
ply,viT) = /p(y, v.g,w;T)dgdw

= /p(y,v]g, w; T)p(g, w; T)dg dw

A maximum likelihood problem with missing data!
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EM for marginal likelihood estimation
o Maximum likelihood problem with missing data
7 =argmaxp(y,v;T) = arg max/p(y, v,g,w;7)dgdw
T T
@ We can use the EM-method!
Estep  Q(7,7)) = E{log p(y, v, g, wiT)}
w.rt. p(g, wly,v; 7))
M-step K1) = arg max Q(r, 7(9)

7 (k+2)
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Monte Carlo Expectation Maximization
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@ The E-step is difficult to evaluate

Q(T;T(k)) =E {lOg P(% v,&8, W, T)}

= /log [ply,v.g,w;T)|p(g, wly,vi7))dg dw

@ We can use the same particle approximation as before!

Q(r. 7™
1M . .
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Monte Carlo Expectation Maximization

@ The E-step is difficult to evaluate

Q(T;T(k)) =E {lOg P(% v,&8, W, T)}

= /log [ply,v.g,w;T)|p(g, wly,vi7))dg dw

@ We can use the same particle approximation as before!

Q(r, 7))
1< .
~ /Iog [p(y,v, g, w;T)] v Zé(g — g9 w—wY))dgdw
j=1
M

Z p(y, v, 89, w); 7)]

=1
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Monte Carlo Expectation Maximization

MCEM for hyperparameter estimation

MC-step {g,

E-step

WU)},-\i

= particle approximation of p(g, wly, v; T(k))

Qr, 7)) = = Zlogpy,vg wt); 7)
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Monte Carlo Expectation Maximization

MCEM for hyperparameter estimation

MC-step {g(j) WU)}M = particle approximation of p(g, wly, v; T(k))
E-step Q(r, 7y = = Zlogpy,vg wl); 7)

M-step 7K1 = arg max Q(r, 79)
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Monte Carlo inference in Ul models

o MCEM for hyperparameter estimation
MC-step {g¥, WU)}M = GIBBSSAMPLER(T(k))

E-step Qr. 7"y = - Z log p(y, v,g¥,
j=1

M-step kD) — arg max Q(r, T(k))

w).

7)
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Monte Carlo inference in Ul models

o MCEM for hyperparameter estimation

MC-step {gU),wU)}JM :GIBBSSAMPLER(T(k))

0 k ),
E-step Qr. 7"y = - Z;logp y.,v.g
J
M-step 7K = arg max Q(r, 79)

@ Posterior means

{gV, w0 }j’\il = GIBBSSAMPLER(?)

M

1 ¢

E{gly. v}~ ;> &%
j=1

1
E{wly,v} ~ MZ wl)
j=1

w).

7)

22
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Example: Hammerstein models

@ Nonparametric Hammerstein model

@ uncertain-input model with
g~ N(0,Ke(p) W~ N(0,Ku(6)

max(i,j 1
Kby = g7 KO e [ 0P

Stable-spline kernel

23



Example: Hammerstein models
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Under the hood

o MCEM for hyperparameter estimation
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Under the hood B
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o MCEM for hyperparameter estimation

1. MC Step: Gibbs sampler
» Reduce the covariance matrices with SVD (Bad conditioning!)
> Draw g and w
» Discard 200 burn-in particles
> Generate 500 particles for w and g

2. E-step and M-step available in (almost) closed form

3. lterate until convergence

@ Run new Gibbs sampler

1. Reduce the covariance matrices with SVD (Bad conditioning!)
2. Discard 500 burn-in particles
3. Generate 1000 particles for w and g

24
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Special classes of systems

@ PIPS: parametric-input parametric-system models

Kg(p) =0 Kw(0) = 0<— ML and PEM!
o GIPS: Gaussian-input parametric-system models
Kg(P) =0

@ PIGS: parametric-input Gaussian-system models
Kw(68) = 0+ Bayesian FIR models!
EIGS: Estimated-input Gaussian-system models

w=w

25
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@ Semi-blind model

ue(0)

26



Example: Semi-blind models
@ Semi-blind model

€
ut(Q) > S _’@_’ y
@ Piecewise constant input
03
ue(0) = — %
01 1
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Example: Semi-blind models
@ Semi-blind model

@ Piecewise constant input

ue(0) = —1 %

1

1 Ty T, T3 T,
@ PIGS uncertain-input model with

w~N(H0,0) g ~N(0,K(p))

26



Example: Semi-blind models
0.5[ | ]

—05[ ! ! ! ! !
0 5 10 15 20 25 30

0 | | | | |
0 20 40 60 80 100 120 140 160 180 200
t

i = 20, N = 200, p = 20, SNR = 10, — = true, - - - = estimated 26



Other examples

Errors-in-variables

o

o Cascaded models

@ Estimation of initial conditions
o

Systems with missing data
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Another Hammerstein example
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Another Hammerstein example

u— ()2 g »(—J_'B—vy
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Another Hammerstein example
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We need a noise model with heavy tails

04| —— Normal ||

— Student-t




Compounded Gaussian noise model

@ Student-t model for the noise

g ~ St(v,n)

30
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Compounded Gaussian noise model

@ Student-t model for the noise
g ~ St(v,n)
@ Equivalently, each noise precision is Gamma distributed

At ~ Ga(a, f) <— Prior density!
51")\1‘ ~ N(O, A;l)
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Model estimation

@ Priors

g NN(Ov Kg(P))?

@ Data model

y|g, w, )\17

w ~N(0, Ky(p)), Ae~ Ga(a,B)

t=1,...,N

-  An ~ N (W, Diag{\;1})
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Model estimation

@ Priors
g ~N(0, Kg(p)), w~N(0, Ku(p)), Xt~ Ga(a,B)
t=1,...,N
e Data model
ylg,w, A1, AN ~ N(Wg, Diag{At_l})

@ Same type of model as before only more hyperparameters
({\:}M_; instead of o?)
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Model estimation

@ Priors
g ~N(0, Kg(p)), w~N(0, Ku(p)), Xt~ Ga(a,B)
t=1,...,N
e Data model
ylg,w, A1, AN ~ N(Wg, Diag{At_l})

@ Same type of model as before only more hyperparameters
({\:}M_; instead of o?)

@ Same tools as before can be used (MCEM, Gibbs sampling)
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Gibbs sampling

N
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Gibbs sampling
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Gibbs sampling
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In sequence
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Gibbs sampling

®
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/

In sequence
1. sample g |w(i—1D X(-1) y
2. sample w(|g() X(-1) y
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In sequence
1. sample g |w(i—1D X(-1) y
2. sample w(|g() X(-1) y
3. sample X(D|g() #()y
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Gibbs sampling

In sequence
\(?//@ nl_ sample g |w(i—1) X(-1) )

2. sample W(i)’g(i)’/_\(i—l)’y
@ 3. sample X(D|g() #()y

Result
A Markov chain with (g, w, Aly) as its stationary distribution
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Gibbs sampling

In sequence
\(?//@ nl_ sample g |w(i—1) X(-1) )

2. sample W(i)’g(i)’/_\(i—l)’y
@ 3. sample X(D|g() #()y

Result
A Markov chain with (g, w, Aly) as its stationary distribution

Known expressions for
g‘yv Wa)‘NN(mg7Pg)
W|Y7g7>\ NN(mWa Pw)
)‘t|y7g7 w o~ Ga‘(ata /Bt)

32



Approximate inference algorithm for Robust Ul models

\a,m—— e
oo

\/ \/

return g, w, A
end procedure

1. procedure ESTIMATE-ROBUST(data)

2. Initialize p, &, B

3: while not converged do > EM
4: Approximate Q(p, a, /3) > Gibbs sampling
5: p, 6, B+ arg max, .8 Q(p, @, B) > Scalar optimization
6: end while

7: 5w, \+— E {[} g, w, Aly; p, &, F] > Gibbs sampling
8: \

9:

33



Simulation study: Hammerstein systems

f(-)

34



Simulation study: Hammerstein systems

u— (") g HDH—Y

@ Polynomial nonlinearity of order p € 5,...,10

34



Simulation study: Hammerstein systems

u— (") g HDH—Y

@ Polynomial nonlinearity of order p € 5,...,10

@ Transfer function of order m € 3,4,5

34



Simulation study: Hammerstein systems

u— (") g HDH—Y

@ Polynomial nonlinearity of order p € 5,...,10
@ Transfer function of order m € 3,4,5

@ N = 300 samples of output, uniform white input in —1,1

34



Simulation study: Hammerstein systems

u— f() § ~H—Y

@ Polynomial nonlinearity of order p € 5,...,10
@ Transfer function of order m € 3,4,5

@ N = 300 samples of output, uniform white input in —1,1

Two methods

34



Simulation study: Hammerstein systems

u— f() § ~H—Y

@ Polynomial nonlinearity of order p € 5,...,10

@ Transfer function of order m € 3,4,5

@ N = 300 samples of output, uniform white input in —1,1
Two methods

H-Gaussian with Gaussian noise model

34



Simulation study: Hammerstein systems

u— f() § ~H—Y

@ Polynomial nonlinearity of order p € 5,...,10
@ Transfer function of order m € 3,4,5

@ N = 300 samples of output, uniform white input in —1,1

Two methods
H-Gaussian with Gaussian noise model
H-Robust with Student-t noise model

34



Simulation study: Hammerstein systems

u— f() § ~H—Y

@ Polynomial nonlinearity of order p € 5,...,10
@ Transfer function of order m € 3,4,5

@ N = 300 samples of output, uniform white input in —1,1

Two methods
H-Gaussian with Gaussian noise model
H-Robust with Student-t noise model

Two experiments

34



Simulation study: Hammerstein systems

u— f() § ~H—Y

@ Polynomial nonlinearity of order p € 5,...,10
@ Transfer function of order m € 3,4,5

@ N = 300 samples of output, uniform white input in —1,1

Two methods
H-Gaussian with Gaussian noise model
H-Robust with Student-t noise model
Two experiments

e Varying number of outliers (with fixed variance 100?)

34



Simulation study: Hammerstein systems

u— (") g HDH—Y

@ Polynomial nonlinearity of order p € 5,...,10
@ Transfer function of order m € 3,4,5

@ N = 300 samples of output, uniform white input in —1,1

Two methods
H-Gaussian with Gaussian noise model
H-Robust with Student-t noise model
Two experiments
e Varying number of outliers (with fixed variance 100?)
@ Varying outlier variance (with fixed fraction 15%)

34



Outlier fraction results

0.8

0.6

Fit

0.4

0.2

A
| N | | |

0 | |
0% 10% 20% 30% 40% 50% 60%

Fraction of outliers Nyugiiers/ N

—& ---f @OH-Robust AAH—Gaussian‘

35



Outlier variance results
1

0.8

0.6

Fit

0.4

0.2

i | Lol L1l L L1l

0
101 100 10! 102 103

Outlier variance (multiples of noiseless variance)

—8 ---f @ OH-Robust AAH—Gaussian‘

36



Conclusions

37



Conclusions

@ Many classical problems are uncertain-inputs problems

37



Conclusions

@ Many classical problems are uncertain-inputs problems

@ Proposed a model for uncertain-input systems

FKT

& verenscar
% Siionsr 42

™

37



Conclusions

@ Many classical problems are uncertain-inputs problems

@ Proposed a model for uncertain-input systems
@ Estimated the parameters

» Gibbs sampling
> MCEM
» Monte Carlo integration

Fomy

& verenscar
%, Soionsr 42

37



Conclusions B
ZKTHS

& verenscar
RGP

Many classical problems are uncertain-inputs problems

Proposed a model for uncertain-input systems

Estimated the parameters

» Gibbs sampling
> MCEM
» Monte Carlo integration

Examples of classical problems

» Hammerstein model
» Semi-blind model

37



Conclusions

Many classical problems are uncertain-inputs problems

Proposed a model for uncertain-input systems

Estimated the parameters

» Gibbs sampling
> MCEM
» Monte Carlo integration

Examples of classical problems

» Hammerstein model
» Semi-blind model

Proposed a robust extension with Student-t likelihood
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