
ACTIVE APPLICATION ORIENTED LEARNING
OF

COMPLEX DYNAMICAL SYSTEMS
WITH

APPLICATION TO MPC

Håkan Hjalmarsson

ACCESS Linnaeus Center
AdBIOPRO - Center for Advanced Bioproduction

School of Electrical Engineering and Computer Science
KTH - Royal Insititute of Technology, Stockholm

DDCLS’18
May 26, 2018

The problem Ogunnaike 1996:
There is
abundant
evidence in
industrial
practice that
when modeling
for control is
not based on
criteria related
to the actual
end use, the
results can
sometimes be
quite
disappointing

Main objective
Predictable performance

The Problem

Controller

Ogunnaike 1996:

... obtaining the
process model
is the single
most time
consuming task
in the
application of
model based
control

Ogunnaike 1996:

... obtaining the process model is the single most time consuming
task in the application of model based control

I’m afraid this still describes state-of-the art....

Ogunnaike 1996:

... obtaining the process model is the single most time consuming
task in the application of model based control

I’m afraid this still describes state-of-the art....

Outline

Application oriented experiment design

Output error models

The impact of optimal experiments on the identification problem

Computing the optimal input

Experimental results

Active application oriented learning

Application oriented dual control

Summary

Outline

Application oriented experiment design

Output error models

The impact of optimal experiments on the identification problem

Computing the optimal input

Experimental results

Active application oriented learning

Application oriented dual control

Summary

An application example: MPC of a DC-motor

+
− V

R L
i

+
−e

φM

JM
φL

JL

K

Input: Voltage V
Output: Angle φL
Model parameters θ: Resistance R, Moment of inertia JL,
Elasticity K, ...
True parameters: θo

An application example: MPC of a DC-motor

Ideal response: yt(θo) - true parameters used in MPC

Actual response: yt(θ) – parameter θ used in MPC

Performance degradation /Set of acceptable models

Vapp(θ) = 1
N

N∑
t=1

(yt(θo)− yt(θ))2

Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
(γ = accuracy)

An application example: MPC of a DC-motor

Ideal response: yt(θo) - true parameters used in MPC
Actual response: yt(θ) – parameter θ used in MPC

Performance degradation /Set of acceptable models

Vapp(θ) = 1
N

N∑
t=1

(yt(θo)− yt(θ))2

Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
(γ = accuracy)

An application example: MPC of a DC-motor

Ideal response: yt(θo) - true parameters used in MPC
Actual response: yt(θ) – parameter θ used in MPC

Performance degradation /Set of acceptable models

Vapp(θ) = 1
N

N∑
t=1

(yt(θo)− yt(θ))2

Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
(γ = accuracy)

An application example: MPC of a DC-motor

Ideal response: yt(θo) - true parameters used in MPC
Actual response: yt(θ) – parameter θ used in MPC

Performance degradation /Set of acceptable models

Vapp(θ) = 1
N

N∑
t=1

(yt(θo)− yt(θ))2

Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
(γ = accuracy)

An application example: MPC of a DC-motor

Ideal response: yt(θo) - true parameters used in MPC
Actual response: yt(θ) – parameter θ used in MPC

Performance degradation /Set of acceptable models

Vapp(θ) = 1
N

N∑
t=1

(yt(θo)− yt(θ))2

Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
(γ = accuracy)

An application example: MPC of a DC-motor

Ideal response: yt(θo) - true parameters used in MPC
Actual response: yt(θ) – parameter θ used in MPC

Performance degradation /Set of acceptable models

Vapp(θ) = 1
N

N∑
t=1

(yt(θo)− yt(θ))2

Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
(γ = accuracy)

An application example: MPC of a DC-motor

+
− V

R L
i

+
−e

ωM

JM
ωL

JL

K

Set of acceptable models Eapp:

An application example: MPC of a DC-motor

+
− V

R L
i

+
−e

ωM

JM
ωL

JL

K

Set of acceptable models Eapp:

An application example: MPC of a DC-motor

+
− V

R L
i

+
−e

ωM

JM
ωL

JL

K

Set of acceptable models Eapp:

Summary of concepts

Performance degradation for application: Vapp(θ)

Set of acceptable models: Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
Identification: Produce θ̂N ∈ Eapp ⊂ Rn (N = sample size)

Experiment design objective:

Experimental cost

Least-costly identification
For example: Experimental cost = input energy

Application oriented experiment design
minNE[u2

t]
s.t. θ̂N ∈ Eapp ⊂ Rn

An optimal experiment design problem

Summary of concepts

Performance degradation for application: Vapp(θ)

Set of acceptable models: Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}

Identification: Produce θ̂N ∈ Eapp ⊂ Rn (N = sample size)

Experiment design objective:

Experimental cost

Least-costly identification
For example: Experimental cost = input energy

Application oriented experiment design
minNE[u2

t]
s.t. θ̂N ∈ Eapp ⊂ Rn

An optimal experiment design problem

Summary of concepts

Performance degradation for application: Vapp(θ)

Set of acceptable models: Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
Identification: Produce θ̂N ∈ Eapp ⊂ Rn (N = sample size)

Experiment design objective:

Experimental cost

Least-costly identification
For example: Experimental cost = input energy

Application oriented experiment design
minNE[u2

t]
s.t. θ̂N ∈ Eapp ⊂ Rn

An optimal experiment design problem

Summary of concepts

Performance degradation for application: Vapp(θ)

Set of acceptable models: Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
Identification: Produce θ̂N ∈ Eapp ⊂ Rn (N = sample size)

Experiment design objective:

Experimental cost
Least-costly identification
For example: Experimental cost = input energy

Application oriented experiment design
minNE[u2

t]
s.t. θ̂N ∈ Eapp ⊂ Rn

An optimal experiment design problem

Summary of concepts

Performance degradation for application: Vapp(θ)

Set of acceptable models: Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
Identification: Produce θ̂N ∈ Eapp ⊂ Rn (N = sample size)

Experiment design objective: Experimental cost

Least-costly identification
For example: Experimental cost = input energy

Application oriented experiment design
minNE[u2

t]
s.t. θ̂N ∈ Eapp ⊂ Rn

An optimal experiment design problem

Summary of concepts

Performance degradation for application: Vapp(θ)

Set of acceptable models: Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
Identification: Produce θ̂N ∈ Eapp ⊂ Rn (N = sample size)

Experiment design objective: Experimental cost
Least-costly identification

For example: Experimental cost = input energy

Application oriented experiment design
minNE[u2

t]
s.t. θ̂N ∈ Eapp ⊂ Rn

An optimal experiment design problem

Summary of concepts

Performance degradation for application: Vapp(θ)

Set of acceptable models: Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
Identification: Produce θ̂N ∈ Eapp ⊂ Rn (N = sample size)

Experiment design objective: Experimental cost
Least-costly identification
For example: Experimental cost = input energy

Application oriented experiment design
minNE[u2

t]
s.t. θ̂N ∈ Eapp ⊂ Rn

An optimal experiment design problem

Summary of concepts

Performance degradation for application: Vapp(θ)

Set of acceptable models: Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
Identification: Produce θ̂N ∈ Eapp ⊂ Rn (N = sample size)

Experiment design objective: Experimental cost
Least-costly identification
For example: Experimental cost = input energy

Application oriented experiment design
minNE[u2

t]
s.t. θ̂N ∈ Eapp ⊂ Rn

An optimal experiment design problem

Summary of concepts

Performance degradation for application: Vapp(θ)

Set of acceptable models: Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
Identification: Produce θ̂N ∈ Eapp ⊂ Rn (N = sample size)

Experiment design objective: Experimental cost
Least-costly identification
For example: Experimental cost = input energy

Application oriented experiment design
minNE[u2

t]
s.t. θ̂N ∈ Eapp ⊂ Rn

An optimal experiment design problem

System identification

So

e

C

r u y

Random innovations with variance λe

Stationary signals
True system in the model set: So ⇔ θo (to be relaxed later)
Prediction error identification:

I Prediction error: εt(θ) = yt − ŷt(θ)
I θ̂N = arg min

∑N
t=1 ε

2
t (θ)

System identification

So

e

C

r u y

Random innovations with variance λe
Stationary signals

True system in the model set: So ⇔ θo (to be relaxed later)
Prediction error identification:

I Prediction error: εt(θ) = yt − ŷt(θ)
I θ̂N = arg min

∑N
t=1 ε

2
t (θ)

System identification

So

e

C

r u y

Random innovations with variance λe
Stationary signals
True system in the model set: So ⇔ θo (to be relaxed later)

Prediction error identification:
I Prediction error: εt(θ) = yt − ŷt(θ)
I θ̂N = arg min

∑N
t=1 ε

2
t (θ)

System identification

So

e

C

r u y

Random innovations with variance λe
Stationary signals
True system in the model set: So ⇔ θo (to be relaxed later)
Prediction error identification:

I Prediction error: εt(θ) = yt − ŷt(θ)
I θ̂N = arg min

∑N
t=1 ε

2
t (θ)

System identification

So

e

C

r u y

Random innovations with variance λe
Stationary signals
True system in the model set: So ⇔ θo (to be relaxed later)
Prediction error identification:

I Prediction error: εt(θ) = yt − ŷt(θ)

I θ̂N = arg min
∑N

t=1 ε
2
t (θ)

System identification

So

e

C

r u y

Random innovations with variance λe
Stationary signals
True system in the model set: So ⇔ θo (to be relaxed later)
Prediction error identification:

I Prediction error: εt(θ) = yt − ŷt(θ)
I θ̂N = arg min

∑N
t=1 ε

2
t (θ)

Application oriented experiment design

Vid(θ) = E[ε2
t (θ)]− λe

High accuracy γ (implies large sample size N)
√
N
(
θ̂N − θo

)
∼ AsN

(
0, 2λeV ′′id(θo)−1)

Cannot guarantee θ̂N ∈ Eapp

Relaxation: Use standard (asymptotic) confidence ellipsoid Eid

Probability(θ̂N ∈ Eid) ≈ α (e.g. 99%)

Application oriented experiment design
minNE[u2

t]
s.t. Eid ⊆ Eapp ⊂ Rn

θo

Eid
θo

EidEapp

Application oriented experiment design

Vid(θ) = E[ε2
t (θ)]− λe

High accuracy γ (implies large sample size N)

√
N
(
θ̂N − θo

)
∼ AsN

(
0, 2λeV ′′id(θo)−1)

Cannot guarantee θ̂N ∈ Eapp

Relaxation: Use standard (asymptotic) confidence ellipsoid Eid

Probability(θ̂N ∈ Eid) ≈ α (e.g. 99%)

Application oriented experiment design
minNE[u2

t]
s.t. Eid ⊆ Eapp ⊂ Rn

θo

Eid
θo

EidEapp

Application oriented experiment design

Vid(θ) = E[ε2
t (θ)]− λe

High accuracy γ (implies large sample size N)
√
N
(
θ̂N − θo

)
∼ AsN

(
0, 2λeV ′′id(θo)−1)

Cannot guarantee θ̂N ∈ Eapp

Relaxation: Use standard (asymptotic) confidence ellipsoid Eid

Probability(θ̂N ∈ Eid) ≈ α (e.g. 99%)

Application oriented experiment design
minNE[u2

t]
s.t. Eid ⊆ Eapp ⊂ Rn

θo

Eid
θo

EidEapp

Application oriented experiment design

Vid(θ) = E[ε2
t (θ)]− λe

High accuracy γ (implies large sample size N)
√
N
(
θ̂N − θo

)
∼ AsN

(
0, 2λeV ′′id(θo)−1)

Cannot guarantee θ̂N ∈ Eapp

Relaxation: Use standard (asymptotic) confidence ellipsoid Eid

Probability(θ̂N ∈ Eid) ≈ α (e.g. 99%)

Application oriented experiment design
minNE[u2

t]
s.t. Eid ⊆ Eapp ⊂ Rn

θo

Eid
θo

EidEapp

Application oriented experiment design

Vid(θ) = E[ε2
t (θ)]− λe

High accuracy γ (implies large sample size N)
√
N
(
θ̂N − θo

)
∼ AsN

(
0, 2λeV ′′id(θo)−1)

Cannot guarantee θ̂N ∈ Eapp

Relaxation: Use standard (asymptotic) confidence ellipsoid Eid

Probability(θ̂N ∈ Eid) ≈ α (e.g. 99%)

Application oriented experiment design
minNE[u2

t]
s.t. Eid ⊆ Eapp ⊂ Rn

θo

Eid
θo

EidEapp

Application oriented experiment design

Vid(θ) = E[ε2
t (θ)]− λe

High accuracy γ (implies large sample size N)
√
N
(
θ̂N − θo

)
∼ AsN

(
0, 2λeV ′′id(θo)−1)

Cannot guarantee θ̂N ∈ Eapp

Relaxation: Use standard (asymptotic) confidence ellipsoid Eid

Probability(θ̂N ∈ Eid) ≈ α (e.g. 99%)

Application oriented experiment design
minNE[u2

t]
s.t. Eid ⊆ Eapp ⊂ Rn

θo

Eid

θo

EidEapp

Application oriented experiment design

Vid(θ) = E[ε2
t (θ)]− λe

High accuracy γ (implies large sample size N)
√
N
(
θ̂N − θo

)
∼ AsN

(
0, 2λeV ′′id(θo)−1)

Cannot guarantee θ̂N ∈ Eapp

Relaxation: Use standard (asymptotic) confidence ellipsoid Eid

Probability(θ̂N ∈ Eid) ≈ α (e.g. 99%)

Application oriented experiment design
minNE[u2

t]
s.t. Eid ⊆ Eapp ⊂ Rn

θo

Eid

θo

EidEapp

Application oriented experiment design

Vid(θ) = E[ε2
t (θ)]− λe

High accuracy γ (implies large sample size N)
√
N
(
θ̂N − θo

)
∼ AsN

(
0, 2λeV ′′id(θo)−1)

Cannot guarantee θ̂N ∈ Eapp

Relaxation: Use standard (asymptotic) confidence ellipsoid Eid

Probability(θ̂N ∈ Eid) ≈ α (e.g. 99%)

Application oriented experiment design
minNE[u2

t]
s.t. Eid ⊆ Eapp ⊂ Rn

θo

Eid
θo

EidEapp

Application oriented experiment design

Vid(θ) = E[ε2
t (θ)]− λe

High accuracy γ (implies large sample size N)
√
N
(
θ̂N − θo

)
∼ AsN

(
0, 2λeV ′′id(θo)−1)

Cannot guarantee θ̂N ∈ Eapp

Relaxation: Use standard (asymptotic) confidence ellipsoid Eid

Probability(θ̂N ∈ Eid) ≈ α (e.g. 99%)

Application oriented experiment design
minNE[u2

t]
s.t. Eid ⊆ Eapp ⊂ Rn

θo

Eid
θo

EidEapp

An alternative formulation

Application oriented experiment design
minNE[u2

t]
s.t. Eid ⊆ Eapp ⊂ Rn

can approximately be formulated as

Application oriented experiment design
minNE[u2

t]
s.t. NVid(θ)≥ λeγnVapp(θ), ∀θ ∈ Eapp

An alternative formulation

Application oriented experiment design
minNE[u2

t]
s.t. Eid ⊆ Eapp ⊂ Rn

can approximately be formulated as

Application oriented experiment design
minNE[u2

t]
s.t. NVid(θ)≥ λeγnVapp(θ), ∀θ ∈ Eapp

Outline

Application oriented experiment design

Output error models

The impact of optimal experiments on the identification problem

Computing the optimal input

Experimental results

Active application oriented learning

Application oriented dual control

Summary

Output error models

True system: yt = Go(q)ut + et, open loop

Model: yt = G(q, θ)ut + et

PE: εt(θ) = yt −G(q, θ)ut

= (Go(q)−G(q, θ))ut + et

Vid(θ) = E[ε2
t (θ)]− λe

= E[((Go(q)−G(q, θ))ut)2] + E[e2
t]− λe

= 1
2π

∫ π

−π
Φid
u (ejω)

∣∣∣Go(ejω)−G(ejω, θ)
∣∣∣2 dω

Output error models

True system: yt = Go(q)ut + et, open loop

Model: yt = G(q, θ)ut + et

PE: εt(θ) = yt −G(q, θ)ut

= (Go(q)−G(q, θ))ut + et

Vid(θ) = E[ε2
t (θ)]− λe

= E[((Go(q)−G(q, θ))ut)2] + E[e2
t]− λe

= 1
2π

∫ π

−π
Φid
u (ejω)

∣∣∣Go(ejω)−G(ejω, θ)
∣∣∣2 dω

Output error models

True system: yt = Go(q)ut + et, open loop

Model: yt = G(q, θ)ut + et

PE: εt(θ) = yt −G(q, θ)ut

= (Go(q)−G(q, θ))ut + et

Vid(θ) = E[ε2
t (θ)]− λe

= E[((Go(q)−G(q, θ))ut)2] + E[e2
t]− λe

= 1
2π

∫ π

−π
Φid
u (ejω)

∣∣∣Go(ejω)−G(ejω, θ)
∣∣∣2 dω

Output error models

True system: yt = Go(q)ut + et, open loop

Model: yt = G(q, θ)ut + et

PE: εt(θ) = yt −G(q, θ)ut = (Go(q)−G(q, θ))ut + et

Vid(θ) = E[ε2
t (θ)]− λe

= E[((Go(q)−G(q, θ))ut)2] + E[e2
t]− λe

= 1
2π

∫ π

−π
Φid
u (ejω)

∣∣∣Go(ejω)−G(ejω, θ)
∣∣∣2 dω

Output error models

True system: yt = Go(q)ut + et, open loop

Model: yt = G(q, θ)ut + et

PE: εt(θ) = yt −G(q, θ)ut = (Go(q)−G(q, θ))ut + et

Vid(θ) = E[ε2
t (θ)]− λe

= E[((Go(q)−G(q, θ))ut)2] + E[e2
t]− λe

= 1
2π

∫ π

−π
Φid
u (ejω)

∣∣∣Go(ejω)−G(ejω, θ)
∣∣∣2 dω

Output error models

True system: yt = Go(q)ut + et, open loop

Model: yt = G(q, θ)ut + et

PE: εt(θ) = yt −G(q, θ)ut = (Go(q)−G(q, θ))ut + et

Vid(θ) = E[ε2
t (θ)]− λe

= E[((Go(q)−G(q, θ))ut)2] + E[e2
t]− λe

= 1
2π

∫ π

−π
Φid
u (ejω)

∣∣∣Go(ejω)−G(ejω, θ)
∣∣∣2 dω

Output error models

True system: yt = Go(q)ut + et, open loop

Model: yt = G(q, θ)ut + et

PE: εt(θ) = yt −G(q, θ)ut = (Go(q)−G(q, θ))ut + et

Vid(θ) = E[ε2
t (θ)]− λe

= E[((Go(q)−G(q, θ))ut)2] + E[e2
t]− λe

= 1
2π

∫ π

−π
Φid
u (ejω)

∣∣∣Go(ejω)−G(ejω, θ)
∣∣∣2 dω

Output error models

Application oriented experiment design

minNE[u2
t]

= 1
2π

∫ π

−π
NΦid

u (ejω) dω

s.t. NVid(θ)︸ ︷︷ ︸
1

2π

∫ π
−π NΦid

u(ejω) |Go(ejω)−G(ejω ,θ)|2 dω

≥ λeγnVapp(θ), ∀θ ∈ Eapp

Minimization with respect to energy density spectrum NΦid
u

Optimization tries to achieve

NVid(θ) = λe γ nVapp(θ), ∀θ ∈ Eapp

Identification cost matched to performance degradation

Output error models

Application oriented experiment design

minNE[u2
t] = 1

2π

∫ π

−π
NΦid

u (ejω) dω

s.t. NVid(θ)︸ ︷︷ ︸
1

2π

∫ π
−π NΦid

u(ejω) |Go(ejω)−G(ejω ,θ)|2 dω

≥ λeγnVapp(θ), ∀θ ∈ Eapp

Minimization with respect to energy density spectrum NΦid
u

Optimization tries to achieve

NVid(θ) = λe γ nVapp(θ), ∀θ ∈ Eapp

Identification cost matched to performance degradation

Output error models

Application oriented experiment design

minNE[u2
t] = 1

2π

∫ π

−π
NΦid

u (ejω) dω

s.t. NVid(θ)︸ ︷︷ ︸
1

2π

∫ π
−π NΦid

u(ejω) |Go(ejω)−G(ejω ,θ)|2 dω

≥ λeγnVapp(θ), ∀θ ∈ Eapp

Minimization with respect to energy density spectrum NΦid
u

Optimization tries to achieve

NVid(θ) = λe γ nVapp(θ), ∀θ ∈ Eapp

Identification cost matched to performance degradation

Output error models

Application oriented experiment design

minNE[u2
t] = 1

2π

∫ π

−π
NΦid

u (ejω) dω

s.t. NVid(θ)︸ ︷︷ ︸
1

2π

∫ π
−π NΦid

u(ejω) |Go(ejω)−G(ejω ,θ)|2 dω

≥ λeγnVapp(θ), ∀θ ∈ Eapp

Minimization with respect to energy density spectrum NΦid
u

Optimization tries to achieve

NVid(θ) = λe γ nVapp(θ), ∀θ ∈ Eapp

Identification cost matched to performance degradation

Output error models

Application oriented experiment design

minNE[u2
t] = 1

2π

∫ π

−π
NΦid

u (ejω) dω

s.t. NVid(θ)︸ ︷︷ ︸
1

2π

∫ π
−π NΦid

u(ejω) |Go(ejω)−G(ejω ,θ)|2 dω

≥ λeγnVapp(θ), ∀θ ∈ Eapp

Minimization with respect to energy density spectrum NΦid
u

Optimization tries to achieve

NVid(θ) = λe γ nVapp(θ), ∀θ ∈ Eapp

Identification cost matched to performance degradation

Model Reference Control

Go
yt

et

−C

ut

Controller C = C(G), G output error model

Desired sensitivity function: Sξ
Achieved sensitivity function: S(G) = 1

1+C(G)Go

Performance degradation: Vapp(G) :=
∥∥∥S(G)−Sξ

Sξ

∥∥∥2

2

Model Reference Control

Go
yt

et

−C

ut

Controller C = C(G), G output error model
Desired sensitivity function: Sξ

Achieved sensitivity function: S(G) = 1
1+C(G)Go

Performance degradation: Vapp(G) :=
∥∥∥S(G)−Sξ

Sξ

∥∥∥2

2

Model Reference Control

Go
yt

et

−C

ut

Controller C = C(G), G output error model
Desired sensitivity function: Sξ
Achieved sensitivity function: S(G) = 1

1+C(G)Go

Performance degradation: Vapp(G) :=
∥∥∥S(G)−Sξ

Sξ

∥∥∥2

2

Model Reference Control

Go
yt

et

−C

ut

Controller C = C(G), G output error model
Desired sensitivity function: Sξ
Achieved sensitivity function: S(G) = 1

1+C(G)Go

Performance degradation: Vapp(G) :=
∥∥∥S(G)−Sξ

Sξ

∥∥∥2

2

Model Reference Control

minNE[u2(t)]
s.t. NVid(θ) ≥ γλen Vapp(θ)

Matching condition: NVid(θ) = γλenVapp(θ)

⇒ NΦid
u = γλenΦdesired

u

Experimental conditions during identification should be a
scaled version of the desired operating conditions!

Model Reference Control

minNE[u2(t)]
s.t. NVid(θ) ≥ γλen Vapp(θ)

Matching condition: NVid(θ) = γλenVapp(θ)

⇒ NΦid
u = γλenΦdesired

u

Experimental conditions during identification should be a
scaled version of the desired operating conditions!

Model Reference Control

minNE[u2(t)]
s.t. NVid(θ) ≥ γλen Vapp(θ)

Matching condition: NVid(θ) = γλenVapp(θ)

⇒ NΦid
u = γλenΦdesired

u

Experimental conditions during identification should be a
scaled version of the desired operating conditions!

Model Reference Control

minNE[u2(t)]
s.t. NVid(θ) ≥ γλen Vapp(θ)

Matching condition: NVid(θ) = γλenVapp(θ)

⇒ NΦid
u = γλenΦdesired

u

Experimental conditions during identification should be a
scaled version of the desired operating conditions!

Outline

Application oriented experiment design

Output error models

The impact of optimal experiments on the identification problem

Computing the optimal input

Experimental results

Active application oriented learning

Application oriented dual control

Summary

Static gain estimation

Model order: low true high
Accuracy:

good good good

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗

Optimal input: ut = u (constant) ⇒ yt = (
∑
k θ

o
k) u+ et

Property of interest visible
No other system property visible (due to min energy crit.)

⇒ Accuracy does not decrease if model underparametrized
⇒ Accuracy does not decrease if model overparametrized

Static gain estimation

Model order: low true high
Accuracy:

good good good

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗

Optimal input: ut = u (constant) ⇒ yt = (
∑
k θ

o
k) u+ et

Property of interest visible
No other system property visible (due to min energy crit.)

⇒ Accuracy does not decrease if model underparametrized
⇒ Accuracy does not decrease if model overparametrized

Static gain estimation

Model order: low true high
Accuracy:

good good good

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗

Optimal input: ut = u (constant) ⇒ yt = (
∑
k θ

o
k) u+ et

Property of interest visible
No other system property visible (due to min energy crit.)

⇒ Accuracy does not decrease if model underparametrized
⇒ Accuracy does not decrease if model overparametrized

Static gain estimation

Model order: low true high
Accuracy:

good good good

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗

Optimal input: ut = u (constant)

⇒ yt = (
∑
k θ

o
k) u+ et

Property of interest visible
No other system property visible (due to min energy crit.)

⇒ Accuracy does not decrease if model underparametrized
⇒ Accuracy does not decrease if model overparametrized

Static gain estimation

Model order: low true high
Accuracy:

good

good

good

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗

Optimal input: ut = u (constant)

⇒ yt = (
∑
k θ

o
k) u+ et

Property of interest visible
No other system property visible (due to min energy crit.)

⇒ Accuracy does not decrease if model underparametrized
⇒ Accuracy does not decrease if model overparametrized

Static gain estimation

Model order: low true high
Accuracy:

good

good

good

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗

Optimal input: ut = u (constant) ⇒ yt = (
∑
k θ

o
k) u+ et

Property of interest visible
No other system property visible (due to min energy crit.)

⇒ Accuracy does not decrease if model underparametrized
⇒ Accuracy does not decrease if model overparametrized

Static gain estimation

Model order: low true high
Accuracy:

good

good

good

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗

Optimal input: ut = u (constant) ⇒ yt = (
∑
k θ

o
k) u+ et

Property of interest visible

No other system property visible (due to min energy crit.)
⇒ Accuracy does not decrease if model underparametrized
⇒ Accuracy does not decrease if model overparametrized

Static gain estimation

Model order: low true high
Accuracy:

good

good

good

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗

Optimal input: ut = u (constant) ⇒ yt = (
∑
k θ

o
k) u+ et

Property of interest visible
No other system property visible (due to min energy crit.)

⇒ Accuracy does not decrease if model underparametrized
⇒ Accuracy does not decrease if model overparametrized

Static gain estimation

Model order: low true high
Accuracy:

good

good

good

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗

Optimal input: ut = u (constant) ⇒ yt = (
∑
k θ

o
k) u+ et

Property of interest visible
No other system property visible (due to min energy crit.)

⇒ Accuracy does not decrease if model underparametrized

⇒ Accuracy does not decrease if model overparametrized

Static gain estimation

Model order: low true high
Accuracy:

good

good

good

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗

Optimal input: ut = u (constant) ⇒ yt = (
∑
k θ

o
k) u+ et

Property of interest visible
No other system property visible (due to min energy crit.)

⇒ Accuracy does not decrease if model underparametrized

⇒ Accuracy does not decrease if model overparametrized

Static gain estimation

Model order: low true high
Accuracy: good good

good

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗

Optimal input: ut = u (constant) ⇒ yt = (
∑
k θ

o
k) u+ et

Property of interest visible
No other system property visible (due to min energy crit.)

⇒ Accuracy does not decrease if model underparametrized

⇒ Accuracy does not decrease if model overparametrized

Static gain estimation

Model order: low true high
Accuracy: good good good

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗

Optimal input: ut = u (constant) ⇒ yt = (
∑
k θ

o
k) u+ et

Property of interest visible
No other system property visible (due to min energy crit.)

⇒ Accuracy does not decrease if model underparametrized
⇒ Accuracy does not decrease if model overparametrized

Application oriented experiment design: Summary

Application oriented experiment design
Aims at achieving

N Vid(θ) = λe γ n Vapp(θ)

using minimum energy

Typically leads to similar operating conditions during
identification as the ones desired during the application
To achieve this requires parsimonious excitation:

i) System properties important to the application should be
visible in the data

ii) System properties not important to the ap-
plication should not be visible in the data, unless necessary for i).

(The let sleeping dogs lie paradigm)

As a result, the entire system may not have to be identified!

I Choice of model structure less critical

Application oriented experiment design: Summary

Application oriented experiment design
Aims at achieving

N Vid(θ) = λe γ n Vapp(θ)

using minimum energy

Typically leads to similar operating conditions during
identification as the ones desired during the application

To achieve this requires parsimonious excitation:

i) System properties important to the application should be
visible in the data

ii) System properties not important to the ap-
plication should not be visible in the data, unless necessary for i).

(The let sleeping dogs lie paradigm)

As a result, the entire system may not have to be identified!

I Choice of model structure less critical

Application oriented experiment design: Summary

Application oriented experiment design
Aims at achieving

N Vid(θ) = λe γ n Vapp(θ)

using minimum energy

Typically leads to similar operating conditions during
identification as the ones desired during the application
To achieve this requires parsimonious excitation:

i) System properties important to the application should be
visible in the data

ii) System properties not important to the ap-
plication should not be visible in the data, unless necessary for i).

(The let sleeping dogs lie paradigm)
As a result, the entire system may not have to be identified!

I Choice of model structure less critical

Application oriented experiment design: Summary

Application oriented experiment design
Aims at achieving

N Vid(θ) = λe γ n Vapp(θ)

using minimum energy

Typically leads to similar operating conditions during
identification as the ones desired during the application
To achieve this requires parsimonious excitation:

i) System properties important to the application should be
visible in the data

ii) System properties not important to the ap-
plication should not be visible in the data, unless necessary for i).

(The let sleeping dogs lie paradigm)
As a result, the entire system may not have to be identified!

I Choice of model structure less critical

Application oriented experiment design: Summary

Application oriented experiment design
Aims at achieving

N Vid(θ) = λe γ n Vapp(θ)

using minimum energy

Typically leads to similar operating conditions during
identification as the ones desired during the application
To achieve this requires parsimonious excitation:

i) System properties important to the application should be
visible in the data

ii) System properties not important to the ap-
plication should not be visible in the data, unless necessary for i).

(The let sleeping dogs lie paradigm)

As a result, the entire system may not have to be identified!

I Choice of model structure less critical

Application oriented experiment design: Summary

Application oriented experiment design
Aims at achieving

N Vid(θ) = λe γ n Vapp(θ)

using minimum energy

Typically leads to similar operating conditions during
identification as the ones desired during the application
To achieve this requires parsimonious excitation:

i) System properties important to the application should be
visible in the data

ii) System properties not important to the ap-
plication should not be visible in the data, unless necessary for i).

(The let sleeping dogs lie paradigm)
As a result, the entire system may not have to be identified!

I Choice of model structure less critical

Application oriented experiment design: Summary

Application oriented experiment design
Aims at achieving

N Vid(θ) = λe γ n Vapp(θ)

using minimum energy

Typically leads to similar operating conditions during
identification as the ones desired during the application
To achieve this requires parsimonious excitation:

i) System properties important to the application should be
visible in the data

ii) System properties not important to the ap-
plication should not be visible in the data, unless necessary for i).

(The let sleeping dogs lie paradigm)
As a result, the entire system may not have to be identified!

I Choice of model structure less critical

Outline

Application oriented experiment design

Output error models

The impact of optimal experiments on the identification problem

Computing the optimal input

Experimental results

Active application oriented learning

Application oriented dual control

Summary

Computations: The Information Application Inequality

The design constraint can be written as

Eid ⊆ Eapp,

or
N Vid(θ) ≥ λeγn Vapp(θ), ∀θ ∈ Eapp

but also as
IN1 (θo) �

γ

2nV
′′

app(θo)

where IN1 (θo) is the Fisher information = NV ′′id (θo)
2λe

The Information Application Inequality

Recall: Vid linear in the input spectrum

Information Application Inequality is an LMI in the input spectrum

Computations: The Information Application Inequality

The design constraint can be written as

Eid ⊆ Eapp, or
N Vid(θ) ≥ λeγn Vapp(θ), ∀θ ∈ Eapp

but also as
IN1 (θo) �

γ

2nV
′′

app(θo)

where IN1 (θo) is the Fisher information = NV ′′id (θo)
2λe

The Information Application Inequality

Recall: Vid linear in the input spectrum

Information Application Inequality is an LMI in the input spectrum

Computations: The Information Application Inequality

The design constraint can be written as

Eid ⊆ Eapp, or
N Vid(θ) ≥ λeγn Vapp(θ), ∀θ ∈ Eapp

but also as
IN1 (θo) �

γ

2nV
′′

app(θo)

where IN1 (θo) is the Fisher information = NV ′′id (θo)
2λe

The Information Application Inequality

Recall: Vid linear in the input spectrum

Information Application Inequality is an LMI in the input spectrum

Computations: The Information Application Inequality

The design constraint can be written as

Eid ⊆ Eapp, or
N Vid(θ) ≥ λeγn Vapp(θ), ∀θ ∈ Eapp

but also as
IN1 (θo) �

γ

2nV
′′

app(θo)

where IN1 (θo) is the Fisher information

= NV ′′id (θo)
2λe

The Information Application Inequality

Recall: Vid linear in the input spectrum

Information Application Inequality is an LMI in the input spectrum

Computations: The Information Application Inequality

The design constraint can be written as

Eid ⊆ Eapp, or
N Vid(θ) ≥ λeγn Vapp(θ), ∀θ ∈ Eapp

but also as
IN1 (θo) �

γ

2nV
′′

app(θo)

where IN1 (θo) is the Fisher information = NV ′′id (θo)
2λe

The Information Application Inequality

Recall: Vid linear in the input spectrum

Information Application Inequality is an LMI in the input spectrum

Computations: The Information Application Inequality

The design constraint can be written as

Eid ⊆ Eapp, or
N Vid(θ) ≥ λeγn Vapp(θ), ∀θ ∈ Eapp

but also as
IN1 (θo) �

γ

2nV
′′

app(θo)

where IN1 (θo) is the Fisher information = NV ′′id (θo)
2λe

The Information Application Inequality

Recall: Vid linear in the input spectrum

Information Application Inequality is an LMI in the input spectrum

Computations: The Information Application Inequality

The design constraint can be written as

Eid ⊆ Eapp, or
N Vid(θ) ≥ λeγn Vapp(θ), ∀θ ∈ Eapp

but also as
IN1 (θo) �

γ

2nV
′′

app(θo)

where IN1 (θo) is the Fisher information = NV ′′id (θo)
2λe

The Information Application Inequality

Recall: Vid linear in the input spectrum

Information Application Inequality is an LMI in the input spectrum

Computations: The Information Application Inequality

The design constraint can be written as

Eid ⊆ Eapp, or
N Vid(θ) ≥ λeγn Vapp(θ), ∀θ ∈ Eapp

but also as
IN1 (θo) �

γ

2nV
′′

app(θo)

where IN1 (θo) is the Fisher information = NV ′′id (θo)
2λe

The Information Application Inequality

Recall: Vid linear in the input spectrum

Information Application Inequality is an LMI in the input spectrum

Computations

min

Input spectrum

NE[u2
t]

s.t. IN1 �
γn

2 V ′′app

Semi-Definite Program (SDP) in input spectrum Φid
u

Optimal experiment design ⇒ Input spectrum Φid
u

Spectral factorization: Φid
u (ejω) = |Ru(ejω)|2

Go

Ho

et

ut yt

vt

Ru

white
noise

Computations

min
Input spectrum

NE[u2
t]

s.t. IN1 �
γn

2 V ′′app

Semi-Definite Program (SDP) in input spectrum Φid
u

Optimal experiment design ⇒ Input spectrum Φid
u

Spectral factorization: Φid
u (ejω) = |Ru(ejω)|2

Go

Ho

et

ut yt

vt

Ru

white
noise

Computations

min
Input spectrum

NE[u2
t]

s.t. IN1 �
γn

2 V ′′app

Semi-Definite Program (SDP) in input spectrum Φid
u

Optimal experiment design ⇒ Input spectrum Φid
u

Spectral factorization: Φid
u (ejω) = |Ru(ejω)|2

Go

Ho

et

ut yt

vt

Ru

white
noise

Computations

min
Input spectrum

NE[u2
t]

s.t. IN1 �
γn

2 V ′′app

Semi-Definite Program (SDP) in input spectrum Φid
u

Optimal experiment design ⇒ Input spectrum Φid
u

Spectral factorization: Φid
u (ejω) = |Ru(ejω)|2

Go

Ho

et

ut yt

vt

Ru

white
noise

Computations

min
Input spectrum

NE[u2
t]

s.t. IN1 �
γn

2 V ′′app

Semi-Definite Program (SDP) in input spectrum Φid
u

Optimal experiment design ⇒ Input spectrum Φid
u

Spectral factorization: Φid
u (ejω) = |Ru(ejω)|2

Go

Ho

et

ut yt

vt

Ru

white
noise

Computations

min
Input spectrum

NE[u2
t]

s.t. IN1 �
γn

2 V ′′app

Semi-Definite Program (SDP) in input spectrum Φid
u

Optimal experiment design ⇒ Input spectrum Φid
u

Spectral factorization: Φid
u (ejω) = |Ru(ejω)|2

Go

Ho

et

ut yt

vt

Ru

white
noise

Computations

min
Input spectrum

NE[u2
t]

s.t. IN1 �
γn

2 V ′′app

Semi-Definite Program (SDP) in input spectrum Φid
u

Optimal experiment design ⇒ Input spectrum Φid
u

Spectral factorization: Φid
u (ejω) = |Ru(ejω)|2

Go

Ho

et

ut yt

vt

Ru

white
noise

Outline

Application oriented experiment design

Output error models

The impact of optimal experiments on the identification problem

Computing the optimal input

Experimental results

Active application oriented learning

Application oriented dual control

Summary

Experimental results: Water tank process

Pump 1 Pump 2

Valve 1 Valve 2

Tank 1 Tank 2

Tank 4Tank 3

Experimental results: Water tank process

0 50 100 150

−1

−0.5

0

0.5

1

Time (s)
(a)

W
at
er

lev
el

in
ta
nk

1
(c
m
)

0 50 100 150

−1

−0.5

0

0.5

1

Time (s)
(b)

W
at
er

lev
el

in
ta
nk

2
(c
m
)

MPC: Black: based on AOID-model. Red: based on white noise excitation

Computations

Application oriented experiment design
minNE[u2(t)]

s.t. IN1 (θo) �
γn

2 V ′′app(θo)

Optimization problem depends on the unknown system!
Solutions:

I Robust experiment design
(e.g. Rojas, Welsh, Goodwin, Feuer 2007)

I Adaptive (or sequential) experiment design

⇒ Active application oriented learning

Computations

Application oriented experiment design
minNE[u2(t)]

s.t. IN1 (θo) �
γn

2 V ′′app(θo)

Optimization problem depends on the unknown system!
Solutions:

I Robust experiment design
(e.g. Rojas, Welsh, Goodwin, Feuer 2007)

I Adaptive (or sequential) experiment design

⇒ Active application oriented learning

Computations

Application oriented experiment design
minNE[u2(t)]

s.t. IN1 (θo) �
γn

2 V ′′app(θo)

Optimization problem depends on the unknown system!

Solutions:

I Robust experiment design
(e.g. Rojas, Welsh, Goodwin, Feuer 2007)

I Adaptive (or sequential) experiment design

⇒ Active application oriented learning

Computations

Application oriented experiment design
minNE[u2(t)]

s.t. IN1 (θo) �
γn

2 V ′′app(θo)

Optimization problem depends on the unknown system!
Solutions:

I Robust experiment design
(e.g. Rojas, Welsh, Goodwin, Feuer 2007)

I Adaptive (or sequential) experiment design

⇒ Active application oriented learning

Computations

Application oriented experiment design
minNE[u2(t)]

s.t. IN1 (θo) �
γn

2 V ′′app(θo)

Optimization problem depends on the unknown system!
Solutions:

I Robust experiment design
(e.g. Rojas, Welsh, Goodwin, Feuer 2007)

I Adaptive (or sequential) experiment design

⇒ Active application oriented learning

Computations

Application oriented experiment design
minNE[u2(t)]

s.t. IN1 (θo) �
γn

2 V ′′app(θo)

Optimization problem depends on the unknown system!
Solutions:

I Robust experiment design
(e.g. Rojas, Welsh, Goodwin, Feuer 2007)

I Adaptive (or sequential) experiment design

⇒ Active application oriented learning

Computations

Application oriented experiment design
minNE[u2(t)]

s.t. IN1 (θo) �
γn

2 V ′′app(θo)

Optimization problem depends on the unknown system!
Solutions:

I Robust experiment design
(e.g. Rojas, Welsh, Goodwin, Feuer 2007)

I Adaptive (or sequential) experiment design
⇒ Active application oriented learning

Outline

Application oriented experiment design

Output error models

The impact of optimal experiments on the identification problem

Computing the optimal input

Experimental results

Active application oriented learning

Application oriented dual control

Summary

Active application oriented learning

Ru Go

Ho

et

ut yt
white
noise vt

Recursive IdExp. design
θ̂(t)

Ru(t)

An adaptive feedback system
But measured signal not fed back directly
Exp. design limits input power ⇒ Stability when Go stable

Key questions:
Convergence?
Accuracy?

Active application oriented learning

Ru Go

Ho

et

ut yt
white
noise vt

Recursive Id

Exp. design
θ̂(t)

Ru(t)

An adaptive feedback system
But measured signal not fed back directly
Exp. design limits input power ⇒ Stability when Go stable

Key questions:
Convergence?
Accuracy?

Active application oriented learning

Ru Go

Ho

et

ut yt
white
noise vt

Recursive IdExp. design
θ̂(t)

Ru(t)

An adaptive feedback system
But measured signal not fed back directly
Exp. design limits input power ⇒ Stability when Go stable

Key questions:
Convergence?
Accuracy?

Active application oriented learning

Ru Go

Ho

et

ut yt
white
noise vt

Recursive IdExp. design
θ̂(t)

Ru(t)

An adaptive feedback system
But measured signal not fed back directly
Exp. design limits input power ⇒ Stability when Go stable

Key questions:
Convergence?
Accuracy?

Active application oriented learning

Ru Go

Ho

et

ut yt
white
noise vt

Recursive IdExp. design
θ̂(t)

Ru(t)

An adaptive feedback system

But measured signal not fed back directly
Exp. design limits input power ⇒ Stability when Go stable

Key questions:
Convergence?
Accuracy?

Active application oriented learning

Ru Go

Ho

et

ut yt
white
noise vt

Recursive IdExp. design
θ̂(t)

Ru(t)

An adaptive feedback system
But measured signal not fed back directly

Exp. design limits input power ⇒ Stability when Go stable

Key questions:
Convergence?
Accuracy?

Active application oriented learning

Ru Go

Ho

et

ut yt
white
noise vt

Recursive IdExp. design
θ̂(t)

Ru(t)

An adaptive feedback system
But measured signal not fed back directly
Exp. design limits input power ⇒ Stability when Go stable

Key questions:
Convergence?
Accuracy?

Active application oriented learning

Ru Go

Ho

et

ut yt
white
noise vt

Recursive IdExp. design
θ̂(t)

Ru(t)

An adaptive feedback system
But measured signal not fed back directly
Exp. design limits input power ⇒ Stability when Go stable

Key questions:
Convergence?
Accuracy?

Active application oriented learning

Key questions:
Convergence?
Accuracy?

Theorem
True linear time-invariant system in the model set
System stable

⇒ θ̂(t) has the same asymptotic accuracy as the off-line estimate
that uses data collected under the optimal experimental conditions
(using knowledge of θo)

Active application oriented learning

Key questions:
Convergence?
Accuracy?

Theorem
True linear time-invariant system in the model set
System stable

⇒ θ̂(t) has the same asymptotic accuracy as the off-line estimate
that uses data collected under the optimal experimental conditions
(using knowledge of θo)

Active application oriented learning

What happens when true system is not in the model set?

Example: Non-minimum phase zero estimation

True system: yt = (q − 3)(q − 0.1)(q − 0.2)(q + 0.3)
q4(q − 0.5) ut + q

q − 0.8e
o
t

Model: yt = θ1q + θ2
q2 ut + et

True system

Zero estimate

Example: Non-minimum phase zero estimation

True system: yt = (q − 3)(q − 0.1)(q − 0.2)(q + 0.3)
q4(q − 0.5) ut + q

q − 0.8e
o
t

Model: yt = θ1q + θ2
q2 ut + et

True system

Zero estimate

Example: Non-minimum phase zero estimation

True system: yt = (q − 3)(q − 0.1)(q − 0.2)(q + 0.3)
q4(q − 0.5) ut + q

q − 0.8e
o
t

Model: yt = θ1q + θ2
q2 ut + et

True system

Zero estimate

Example: Non-minimum phase zero estimation

True system: yt = (q − 3)(q − 0.1)(q − 0.2)(q + 0.3)
q4(q − 0.5) ut + q

q − 0.8e
o
t

Model: yt = θ1q + θ2
q2 ut + et

True system Zero estimate

Outline

Application oriented experiment design

Output error models

The impact of optimal experiments on the identification problem

Computing the optimal input

Experimental results

Active application oriented learning

Application oriented dual control

Summary

Application oriented dual control

min
Input spectrum

NE[u2
t], s.t. IN1 (θo) �

γn

2 V ′′app(θo)

Idéa: Replace cost function with control objective.

Policy (control rule): π = (π1, π2, . . .)

Initial state distribution: β(x)

Instantaneous cost: c(xt, ut) e.g. yTt Qyt + utSut

Expected average cost: Cβ(π,N) = 1
N

∑N
t=1 Eπβ {c(xt, ut)}

Constraints: xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo) Reward

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Application oriented dual control

min
Input spectrum

NE[u2
t], s.t. IN1 (θo) �

γn

2 V ′′app(θo)

Idéa: Replace cost function with control objective.

Policy (control rule): π = (π1, π2, . . .)

Initial state distribution: β(x)

Instantaneous cost: c(xt, ut) e.g. yTt Qyt + utSut

Expected average cost: Cβ(π,N) = 1
N

∑N
t=1 Eπβ {c(xt, ut)}

Constraints: xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo) Reward

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Application oriented dual control

min
Input spectrum

NE[u2
t], s.t. IN1 (θo) �

γn

2 V ′′app(θo)

Idéa: Replace cost function with control objective.

Policy (control rule): π = (π1, π2, . . .)

Initial state distribution: β(x)

Instantaneous cost: c(xt, ut) e.g. yTt Qyt + utSut

Expected average cost: Cβ(π,N) = 1
N

∑N
t=1 Eπβ {c(xt, ut)}

Constraints: xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo) Reward

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Application oriented dual control

min
Input spectrum

NE[u2
t], s.t. IN1 (θo) �

γn

2 V ′′app(θo)

Idéa: Replace cost function with control objective.

Policy (control rule): π = (π1, π2, . . .)

Initial state distribution: β(x)

Instantaneous cost: c(xt, ut) e.g. yTt Qyt + utSut

Expected average cost: Cβ(π,N) = 1
N

∑N
t=1 Eπβ {c(xt, ut)}

Constraints: xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo) Reward

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Application oriented dual control

min
Input spectrum

NE[u2
t], s.t. IN1 (θo) �

γn

2 V ′′app(θo)

Idéa: Replace cost function with control objective.

Policy (control rule): π = (π1, π2, . . .)

Initial state distribution: β(x)

Instantaneous cost: c(xt, ut)

e.g. yTt Qyt + utSut

Expected average cost: Cβ(π,N) = 1
N

∑N
t=1 Eπβ {c(xt, ut)}

Constraints: xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo) Reward

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Application oriented dual control

min
Input spectrum

NE[u2
t], s.t. IN1 (θo) �

γn

2 V ′′app(θo)

Idéa: Replace cost function with control objective.

Policy (control rule): π = (π1, π2, . . .)

Initial state distribution: β(x)

Instantaneous cost: c(xt, ut) e.g. yTt Qyt + utSut

Expected average cost: Cβ(π,N) = 1
N

∑N
t=1 Eπβ {c(xt, ut)}

Constraints: xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo) Reward

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Application oriented dual control

min
Input spectrum

NE[u2
t], s.t. IN1 (θo) �

γn

2 V ′′app(θo)

Idéa: Replace cost function with control objective.

Policy (control rule): π = (π1, π2, . . .)

Initial state distribution: β(x)

Instantaneous cost: c(xt, ut) e.g. yTt Qyt + utSut

Expected average cost: Cβ(π,N) = 1
N

∑N
t=1 Eπβ {c(xt, ut)}

Constraints: xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo) Reward

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Application oriented dual control

min
Input spectrum

NE[u2
t], s.t. IN1 (θo) �

γn

2 V ′′app(θo)

Idéa: Replace cost function with control objective.

Policy (control rule): π = (π1, π2, . . .)

Initial state distribution: β(x)

Instantaneous cost: c(xt, ut) e.g. yTt Qyt + utSut

Expected average cost: Cβ(π,N) = 1
N

∑N
t=1 Eπβ {c(xt, ut)}

Constraints: xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo) Reward

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Application oriented dual control

min
Input spectrum

NE[u2
t], s.t. IN1 (θo) �

γn

2 V ′′app(θo)

Idéa: Replace cost function with control objective.

Policy (control rule): π = (π1, π2, . . .)

Initial state distribution: β(x)

Instantaneous cost: c(xt, ut) e.g. yTt Qyt + utSut

Expected average cost: Cβ(π,N) = 1
N

∑N
t=1 Eπβ {c(xt, ut)}

Constraints: xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo) Reward

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Application oriented dual control

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo)

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

We will look at two approaches two solve this problem:

Markov Decision Process (MDP) formulation

Receeding horizon formulation: MPC-X

Application oriented dual control

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo)

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

We will look at two approaches two solve this problem:

Markov Decision Process (MDP) formulation

Receeding horizon formulation: MPC-X

Application oriented dual control

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo)

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

We will look at two approaches two solve this problem:

Markov Decision Process (MDP) formulation

Receeding horizon formulation: MPC-X

Application oriented dual control

min
π

Cβ(π,N)

s.t. IN1 (θo) �
γn

2 V ′′app(θo)

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

We will look at two approaches two solve this problem:

Markov Decision Process (MDP) formulation

Receeding horizon formulation: MPC-X

Markov Decision Process formulation

Infinite horizon cost: Cβ(π) = lim supN→Cβ(π,N)

Reward: Iβ(π, θ) , limN→∞
1
N I

N
1 (θ) (per sample information)

Theory based on discretized state and action spaces

⇒ State x & input u take only finite number of values

⇒ Need to approximate state-space description

⇒ Transition probabilities: pxx̄(u) = P{xt+1 = x̄ |xt = x, ut = u}

Can be computed based on geometry of discretization and
knowledge of distributions of disturbances

Policy: πt(x, u) = P{ut = u |xt = x}

Markov Decision Process formulation

Infinite horizon cost: Cβ(π) = lim supN→Cβ(π,N)

Reward: Iβ(π, θ) , limN→∞
1
N I

N
1 (θ)

(per sample information)

Theory based on discretized state and action spaces

⇒ State x & input u take only finite number of values

⇒ Need to approximate state-space description

⇒ Transition probabilities: pxx̄(u) = P{xt+1 = x̄ |xt = x, ut = u}

Can be computed based on geometry of discretization and
knowledge of distributions of disturbances

Policy: πt(x, u) = P{ut = u |xt = x}

Markov Decision Process formulation

Infinite horizon cost: Cβ(π) = lim supN→Cβ(π,N)

Reward: Iβ(π, θ) , limN→∞
1
N I

N
1 (θ) (per sample information)

Theory based on discretized state and action spaces

⇒ State x & input u take only finite number of values

⇒ Need to approximate state-space description

⇒ Transition probabilities: pxx̄(u) = P{xt+1 = x̄ |xt = x, ut = u}

Can be computed based on geometry of discretization and
knowledge of distributions of disturbances

Policy: πt(x, u) = P{ut = u |xt = x}

Markov Decision Process formulation

Infinite horizon cost: Cβ(π) = lim supN→Cβ(π,N)

Reward: Iβ(π, θ) , limN→∞
1
N I

N
1 (θ) (per sample information)

Theory based on discretized state and action spaces

⇒ State x & input u take only finite number of values

⇒ Need to approximate state-space description

⇒ Transition probabilities: pxx̄(u) = P{xt+1 = x̄ |xt = x, ut = u}

Can be computed based on geometry of discretization and
knowledge of distributions of disturbances

Policy: πt(x, u) = P{ut = u |xt = x}

Markov Decision Process formulation

Infinite horizon cost: Cβ(π) = lim supN→Cβ(π,N)

Reward: Iβ(π, θ) , limN→∞
1
N I

N
1 (θ) (per sample information)

Theory based on discretized state and action spaces

⇒ State x & input u take only finite number of values

⇒ Need to approximate state-space description

⇒ Transition probabilities: pxx̄(u) = P{xt+1 = x̄ |xt = x, ut = u}

Can be computed based on geometry of discretization and
knowledge of distributions of disturbances

Policy: πt(x, u) = P{ut = u |xt = x}

Markov Decision Process formulation

Infinite horizon cost: Cβ(π) = lim supN→Cβ(π,N)

Reward: Iβ(π, θ) , limN→∞
1
N I

N
1 (θ) (per sample information)

Theory based on discretized state and action spaces

⇒ State x & input u take only finite number of values

⇒ Need to approximate state-space description

⇒ Transition probabilities: pxx̄(u) = P{xt+1 = x̄ |xt = x, ut = u}

Can be computed based on geometry of discretization and
knowledge of distributions of disturbances

Policy: πt(x, u) = P{ut = u |xt = x}

Markov Decision Process formulation

Infinite horizon cost: Cβ(π) = lim supN→Cβ(π,N)

Reward: Iβ(π, θ) , limN→∞
1
N I

N
1 (θ) (per sample information)

Theory based on discretized state and action spaces

⇒ State x & input u take only finite number of values

⇒ Need to approximate state-space description

⇒ Transition probabilities: pxx̄(u) = P{xt+1 = x̄ |xt = x, ut = u}

Can be computed based on geometry of discretization and
knowledge of distributions of disturbances

Policy: πt(x, u) = P{ut = u |xt = x}

Markov Decision Process formulation

Infinite horizon cost: Cβ(π) = lim supN→Cβ(π,N)

Reward: Iβ(π, θ) , limN→∞
1
N I

N
1 (θ) (per sample information)

Theory based on discretized state and action spaces

⇒ State x & input u take only finite number of values

⇒ Need to approximate state-space description

⇒ Transition probabilities: pxx̄(u) = P{xt+1 = x̄ |xt = x, ut = u}

Can be computed based on geometry of discretization and
knowledge of distributions of disturbances

Policy: πt(x, u) = P{ut = u |xt = x}

Markov Decision Process formulation

Infinite horizon cost: Cβ(π) = lim supN→Cβ(π,N)

Reward: Iβ(π, θ) , limN→∞
1
N I

N
1 (θ) (per sample information)

Theory based on discretized state and action spaces

⇒ State x & input u take only finite number of values

⇒ Need to approximate state-space description

⇒ Transition probabilities: pxx̄(u) = P{xt+1 = x̄ |xt = x, ut = u}

Can be computed based on geometry of discretization and
knowledge of distributions of disturbances

Policy: πt(x, u) = P{ut = u |xt = x}

Markov Decision Process formulation: Implementation

min
π

Cβ(π)

s.t. NIβ(π, θo) �
γn

2 V ′′app(θo)

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Solution?

Define zxu as the probability of being in state x and taking action u

Occupancy measure

MDP problem is a semi-definite program in {zxu}.

Markov Decision Process formulation: Implementation

min
π

Cβ(π)

s.t. NIβ(π, θo) �
γn

2 V ′′app(θo)

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Solution?

Define zxu as the probability of being in state x and taking action u

Occupancy measure

MDP problem is a semi-definite program in {zxu}.

Markov Decision Process formulation: Implementation

min
π

Cβ(π)

s.t. NIβ(π, θo) �
γn

2 V ′′app(θo)

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Solution?

Define zxu as the probability of being in state x and taking action u

Occupancy measure

MDP problem is a semi-definite program in {zxu}.

Markov Decision Process formulation: Implementation

min
π

Cβ(π)

s.t. NIβ(π, θo) �
γn

2 V ′′app(θo)

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Solution?

Define zxu as the probability of being in state x and taking action u

Occupancy measure

MDP problem is a semi-definite program in {zxu}.

Markov Decision Process formulation: Implementation

min
π

Cβ(π)

s.t. NIβ(π, θo) �
γn

2 V ′′app(θo)

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Solution?

Define zxu as the probability of being in state x and taking action u

Occupancy measure

MDP problem is a semi-definite program in {zxu}.

Markov Decision Process formulation: Simulation study
{
xt+1 = −θ1xt + θ2ut − θ1vt,

yt = xt + vt,

vt: Gaussian white noise with variance 1× 10−3

θo = [0.5, 0.5]T

x split in 51 regions.

u split in 21 regions.

ct(x, u) = 2y2
t + u2

t

0.49 0.5 0.5 0.51 0.51

0.5

0.5

0.51

θ1

θ 2

Set of acceptable models: Blue solid ellipse.

Desired confidence ellipsoid: Red dashed ellipse

Crosses: 100 Monte Carlo simulations using the MDP controller

Markov Decision Process formulation: Simulation study
{
xt+1 = −θ1xt + θ2ut − θ1vt,

yt = xt + vt,

vt: Gaussian white noise with variance 1× 10−3

θo = [0.5, 0.5]T

x split in 51 regions.

u split in 21 regions.

ct(x, u) = 2y2
t + u2

t

0.49 0.5 0.5 0.51 0.51

0.5

0.5

0.51

θ1

θ 2

Set of acceptable models: Blue solid ellipse.

Desired confidence ellipsoid: Red dashed ellipse

Crosses: 100 Monte Carlo simulations using the MDP controller

Markov Decision Process formulation: Simulation study
{
xt+1 = −θ1xt + θ2ut − θ1vt,

yt = xt + vt,

vt: Gaussian white noise with variance 1× 10−3

θo = [0.5, 0.5]T

x split in 51 regions.

u split in 21 regions.

ct(x, u) = 2y2
t + u2

t

0.49 0.5 0.5 0.51 0.51

0.5

0.5

0.51

θ1

θ 2

Set of acceptable models: Blue solid ellipse.

Desired confidence ellipsoid: Red dashed ellipse

Crosses: 100 Monte Carlo simulations using the MDP controller

Markov Decision Process formulation: Simulation study
{
xt+1 = −θ1xt + θ2ut − θ1vt,

yt = xt + vt,

vt: Gaussian white noise with variance 1× 10−3

θo = [0.5, 0.5]T

x split in 51 regions.

u split in 21 regions.

ct(x, u) = 2y2
t + u2

t

0.49 0.5 0.5 0.51 0.51

0.5

0.5

0.51

θ1

θ 2

Set of acceptable models: Blue solid ellipse.

Desired confidence ellipsoid: Red dashed ellipse

Crosses: 100 Monte Carlo simulations using the MDP controller

Markov Decision Process formulation: Simulation study
{
xt+1 = −θ1xt + θ2ut − θ1vt,

yt = xt + vt,

vt: Gaussian white noise with variance 1× 10−3

θo = [0.5, 0.5]T

x split in 51 regions.

u split in 21 regions.

ct(x, u) = 2y2
t + u2

t

0.49 0.5 0.5 0.51 0.51

0.5

0.5

0.51

θ1

θ 2

Set of acceptable models: Blue solid ellipse.

Desired confidence ellipsoid: Red dashed ellipse

Crosses: 100 Monte Carlo simulations using the MDP controller

Markov Decision Process formulation: Simulation study
{
xt+1 = −θ1xt + θ2ut − θ1vt,

yt = xt + vt,

vt: Gaussian white noise with variance 1× 10−3

θo = [0.5, 0.5]T

x split in 51 regions.

u split in 21 regions.

ct(x, u) = 2y2
t + u2

t

0.49 0.5 0.5 0.51 0.51

0.5

0.5

0.51

θ1

θ 2

Set of acceptable models: Blue solid ellipse.

Desired confidence ellipsoid: Red dashed ellipse

Crosses: 100 Monte Carlo simulations using the MDP controller

Markov Decision Process formulation: Simulation study
{
xt+1 = −θ1xt + θ2ut − θ1vt,

yt = xt + vt,

vt: Gaussian white noise with variance 1× 10−3

θo = [0.5, 0.5]T

x split in 51 regions.

u split in 21 regions.

ct(x, u) = 2y2
t + u2

t

0.49 0.5 0.5 0.51 0.51

0.5

0.5

0.51

θ1

θ 2

Set of acceptable models: Blue solid ellipse.

Desired confidence ellipsoid: Red dashed ellipse

Crosses: 100 Monte Carlo simulations using the MDP controller

Markov Decision Process formulation: Simulation study
{
xt+1 = −θ1xt + θ2ut − θ1vt,

yt = xt + vt,

vt: Gaussian white noise with variance 1× 10−3

θo = [0.5, 0.5]T

x split in 51 regions.

u split in 21 regions.

ct(x, u) = 2y2
t + u2

t

0.49 0.5 0.5 0.51 0.51

0.5

0.5

0.51

θ1

θ 2

Set of acceptable models: Blue solid ellipse.

Desired confidence ellipsoid: Red dashed ellipse

Crosses: 100 Monte Carlo simulations using the MDP controller

Markov Decision Process formulation: Simulation study
{
xt+1 = −θ1xt + θ2ut − θ1vt,

yt = xt + vt,

vt: Gaussian white noise with variance 1× 10−3

θo = [0.5, 0.5]T

x split in 51 regions.

u split in 21 regions.

ct(x, u) = 2y2
t + u2

t

0.49 0.5 0.5 0.51 0.51

0.5

0.5

0.51

θ1

θ 2

Set of acceptable models: Blue solid ellipse.

Desired confidence ellipsoid: Red dashed ellipse

Crosses: 100 Monte Carlo simulations using the MDP controller

Markov Decision Process formulation: Summary

Elegant and powerful formulation

Leads to a semi-definite program

but suffers from the curse of dimensionality due to
discretization of state-space

Markov Decision Process formulation: Summary

Elegant and powerful formulation

Leads to a semi-definite program

but suffers from the curse of dimensionality due to
discretization of state-space

Markov Decision Process formulation: Summary

Elegant and powerful formulation

Leads to a semi-definite program

but suffers from the curse of dimensionality due to
discretization of state-space

Receeding horizon formulation

Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk, yk = C(θo)xk
uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown
Data not stationary & feedback
⇒ Cannot use spectrum as design variable

Receeding horizon formulation
Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk, yk = C(θo)xk
uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown
Data not stationary & feedback
⇒ Cannot use spectrum as design variable

Receeding horizon formulation
Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk, yk = C(θo)xk
uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown
Data not stationary & feedback
⇒ Cannot use spectrum as design variable

Receeding horizon formulation
Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk, yk = C(θo)xk
uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown
Data not stationary & feedback
⇒ Cannot use spectrum as design variable

Receeding horizon formulation
Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk,

yk = C(θo)xk
uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown
Data not stationary & feedback
⇒ Cannot use spectrum as design variable

Receeding horizon formulation
Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk, yk = C(θo)xk

uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown
Data not stationary & feedback
⇒ Cannot use spectrum as design variable

Receeding horizon formulation
Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk, yk = C(θo)xk
uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown
Data not stationary & feedback
⇒ Cannot use spectrum as design variable

Receeding horizon formulation
Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk, yk = C(θo)xk
uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown
Data not stationary & feedback
⇒ Cannot use spectrum as design variable

Receeding horizon formulation
Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk, yk = C(θo)xk
uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown
Data not stationary & feedback
⇒ Cannot use spectrum as design variable

Receeding horizon formulation
Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk, yk = C(θo)xk
uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown

Data not stationary & feedback
⇒ Cannot use spectrum as design variable

Receeding horizon formulation
Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk, yk = C(θo)xk
uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown
Data not stationary & feedback

⇒ Cannot use spectrum as design variable

Receeding horizon formulation
Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk, yk = C(θo)xk
uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown
Data not stationary & feedback
⇒ Cannot use spectrum as design variable

Receeding horizon formulation: Implementation

Approximations:

Initial estimate θ̂ replaces θo
IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T
Lifting: Introduce U = ūūT ⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time (maximize κt)
MPC-X: Model Predictive Control with eXperimental constraints

Receeding horizon formulation: Implementation

Approximations:
Initial estimate θ̂ replaces θo

IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T
Lifting: Introduce U = ūūT ⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time (maximize κt)
MPC-X: Model Predictive Control with eXperimental constraints

Receeding horizon formulation: Implementation

Approximations:
Initial estimate θ̂ replaces θo
IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T
Lifting: Introduce U = ūūT ⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time (maximize κt)
MPC-X: Model Predictive Control with eXperimental constraints

Receeding horizon formulation: Implementation

Approximations:
Initial estimate θ̂ replaces θo
IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T

Lifting: Introduce U = ūūT ⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time (maximize κt)
MPC-X: Model Predictive Control with eXperimental constraints

Receeding horizon formulation: Implementation

Approximations:
Initial estimate θ̂ replaces θo
IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T
Lifting:

Introduce U = ūūT ⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time (maximize κt)
MPC-X: Model Predictive Control with eXperimental constraints

Receeding horizon formulation: Implementation

Approximations:
Initial estimate θ̂ replaces θo
IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T
Lifting: Introduce U = ūūT

⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time (maximize κt)
MPC-X: Model Predictive Control with eXperimental constraints

Receeding horizon formulation: Implementation

Approximations:
Initial estimate θ̂ replaces θo
IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T
Lifting: Introduce U = ūūT ⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time (maximize κt)
MPC-X: Model Predictive Control with eXperimental constraints

Receeding horizon formulation: Implementation

Approximations:
Initial estimate θ̂ replaces θo
IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T
Lifting: Introduce U = ūūT ⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time (maximize κt)
MPC-X: Model Predictive Control with eXperimental constraints

Receeding horizon formulation: Implementation

Approximations:
Initial estimate θ̂ replaces θo
IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T
Lifting: Introduce U = ūūT ⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation:

Minimum time (maximize κt)
MPC-X: Model Predictive Control with eXperimental constraints

Receeding horizon formulation: Implementation

Approximations:
Initial estimate θ̂ replaces θo
IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T
Lifting: Introduce U = ūūT ⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time

(maximize κt)
MPC-X: Model Predictive Control with eXperimental constraints

Receeding horizon formulation: Implementation

Approximations:
Initial estimate θ̂ replaces θo
IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T
Lifting: Introduce U = ūūT ⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time (maximize κt)

MPC-X: Model Predictive Control with eXperimental constraints

Receeding horizon formulation: Implementation

Approximations:
Initial estimate θ̂ replaces θo
IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T
Lifting: Introduce U = ūūT ⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time (maximize κt)
MPC-X: Model Predictive Control with eXperimental constraints

Receeding horizon formulation: Alternative approaches

yt =
nb∑
k=1

θkut−k + et = θTφt + et,

φt =
[
ut−1 · · · ut−nb

]T
Persistence of excitation condition:

∑t+1+F
k=t−P φkφ

T
k � ρI

MPCI (Genceli and Nikolaou (1996)): P = 0
Multiobjective MPC with identification (Aggelogiannaki and
Sarimveis (2006)): P = 0
Dual control by information maximization (Rathhouský and
Havlena (2011)): P = 0
PE-MPC (Marafioti (2010)): F = 0

Do not take application into account explicitly

Receeding horizon formulation: Alternative approaches

yt =
nb∑
k=1

θkut−k + et = θTφt + et, φt =
[
ut−1 · · · ut−nb

]T

Persistence of excitation condition:
∑t+1+F
k=t−P φkφ

T
k � ρI

MPCI (Genceli and Nikolaou (1996)): P = 0
Multiobjective MPC with identification (Aggelogiannaki and
Sarimveis (2006)): P = 0
Dual control by information maximization (Rathhouský and
Havlena (2011)): P = 0
PE-MPC (Marafioti (2010)): F = 0

Do not take application into account explicitly

Receeding horizon formulation: Alternative approaches

yt =
nb∑
k=1

θkut−k + et = θTφt + et, φt =
[
ut−1 · · · ut−nb

]T
Persistence of excitation condition:

∑t+1+F
k=t−P φkφ

T
k � ρI

MPCI (Genceli and Nikolaou (1996)): P = 0
Multiobjective MPC with identification (Aggelogiannaki and
Sarimveis (2006)): P = 0
Dual control by information maximization (Rathhouský and
Havlena (2011)): P = 0
PE-MPC (Marafioti (2010)): F = 0

Do not take application into account explicitly

Receeding horizon formulation: Alternative approaches

yt =
nb∑
k=1

θkut−k + et = θTφt + et, φt =
[
ut−1 · · · ut−nb

]T
Persistence of excitation condition:

∑t+1+F
k=t−P φkφ

T
k � ρI

MPCI (Genceli and Nikolaou (1996)): P = 0
Multiobjective MPC with identification (Aggelogiannaki and
Sarimveis (2006)): P = 0
Dual control by information maximization (Rathhouský and
Havlena (2011)): P = 0
PE-MPC (Marafioti (2010)): F = 0

Do not take application into account explicitly

Receeding horizon formulation: Alternative approaches

yt =
nb∑
k=1

θkut−k + et = θTφt + et, φt =
[
ut−1 · · · ut−nb

]T
Persistence of excitation condition:

∑t+1+F
k=t−P φkφ

T
k � ρI

MPCI (Genceli and Nikolaou (1996)): P = 0
Multiobjective MPC with identification (Aggelogiannaki and
Sarimveis (2006)): P = 0
Dual control by information maximization (Rathhouský and
Havlena (2011)): P = 0
PE-MPC (Marafioti (2010)): F = 0

Do not take application into account explicitly

Receeding horizon formulation: Simulation study

Pump 1 Pump 2

Valve 1 Valve 2

Tank 1 Tank 2

Tank 4Tank 3

Receeding horizon formulation: Simulation study


xt+1 =

[
θ3 θ4
1 0

]
xt +

[
4.5
0

]
ut,

yt =
[
θ1 θ2

]
xt + et lower tank level

θo =
[
0.12 0.059 0.74 −0.14

]T
Noise var.: 0.01.

N = 200, F = 5

Performance degradation cost: Vapp(θ) =
∑T
t=1 ‖yt(θo)− yt(θ)‖22

PE-MPC: ρ = 0.5, P = 5, F = 0

MPC-X: Minimum time formulation

Receeding horizon formulation: Simulation study


xt+1 =

[
θ3 θ4
1 0

]
xt +

[
4.5
0

]
ut,

yt =
[
θ1 θ2

]
xt + et

lower tank level

θo =
[
0.12 0.059 0.74 −0.14

]T
Noise var.: 0.01.

N = 200, F = 5

Performance degradation cost: Vapp(θ) =
∑T
t=1 ‖yt(θo)− yt(θ)‖22

PE-MPC: ρ = 0.5, P = 5, F = 0

MPC-X: Minimum time formulation

Receeding horizon formulation: Simulation study


xt+1 =

[
θ3 θ4
1 0

]
xt +

[
4.5
0

]
ut,

yt =
[
θ1 θ2

]
xt + et lower tank level

θo =
[
0.12 0.059 0.74 −0.14

]T
Noise var.: 0.01.

N = 200, F = 5

Performance degradation cost: Vapp(θ) =
∑T
t=1 ‖yt(θo)− yt(θ)‖22

PE-MPC: ρ = 0.5, P = 5, F = 0

MPC-X: Minimum time formulation

Receeding horizon formulation: Simulation study


xt+1 =

[
θ3 θ4
1 0

]
xt +

[
4.5
0

]
ut,

yt =
[
θ1 θ2

]
xt + et lower tank level

θo =
[
0.12 0.059 0.74 −0.14

]T
Noise var.: 0.01.

N = 200, F = 5

Performance degradation cost: Vapp(θ) =
∑T
t=1 ‖yt(θo)− yt(θ)‖22

PE-MPC: ρ = 0.5, P = 5, F = 0

MPC-X: Minimum time formulation

Receeding horizon formulation: Simulation study


xt+1 =

[
θ3 θ4
1 0

]
xt +

[
4.5
0

]
ut,

yt =
[
θ1 θ2

]
xt + et lower tank level

θo =
[
0.12 0.059 0.74 −0.14

]T
Noise var.: 0.01.

N = 200, F = 5

Performance degradation cost: Vapp(θ) =
∑T
t=1 ‖yt(θo)− yt(θ)‖22

PE-MPC: ρ = 0.5, P = 5, F = 0

MPC-X: Minimum time formulation

Receeding horizon formulation: Simulation study


xt+1 =

[
θ3 θ4
1 0

]
xt +

[
4.5
0

]
ut,

yt =
[
θ1 θ2

]
xt + et lower tank level

θo =
[
0.12 0.059 0.74 −0.14

]T
Noise var.: 0.01.

N = 200, F = 5

Performance degradation cost: Vapp(θ) =
∑T
t=1 ‖yt(θo)− yt(θ)‖22

PE-MPC: ρ = 0.5, P = 5, F = 0

MPC-X: Minimum time formulation

Receeding horizon formulation: Simulation study


xt+1 =

[
θ3 θ4
1 0

]
xt +

[
4.5
0

]
ut,

yt =
[
θ1 θ2

]
xt + et lower tank level

θo =
[
0.12 0.059 0.74 −0.14

]T
Noise var.: 0.01.

N = 200, F = 5

Performance degradation cost: Vapp(θ) =
∑T
t=1 ‖yt(θo)− yt(θ)‖22

PE-MPC: ρ = 0.5, P = 5, F = 0

MPC-X: Minimum time formulation

Receeding horizon formulation: Simulation study

20 40 60 80 100 120 140 160 180 200
−1
−0.5

0
0.5

1

Time (sample)

O
ut
pu

t
y t

20 40 60 80 100 120 140 160 180 200
−1
−0.5

0
0.5

1

Time (sample)

O
ut
pu

t
y t

20 40 60 80 100 120 140 160 180 200
−1
−0.5

0
0.5

1

Time (sample)

O
ut
pu

t
y t

Receeding horizon formulation: Simulation study

20 40 60 80 100 120 140 160 180 200
−1
−0.5

0
0.5

1

Time (sample)

In
pu

t
u
t

20 40 60 80 100 120 140 160 180 200
−1
−0.5

0
0.5

1

Time (sample)

In
pu

t
u
t

20 40 60 80 100 120 140 160 180 200
−1
−0.5

0
0.5

1

Time (sample)

In
pu

t
u
t

Receeding horizon formulation: Simulation study

20 40 60 80 100 120 140 160 180 200

−6

−4

−2

0

·104

Time (sample)

λ
m

in
{ I

t 1
−

γ
n 2
V
′′ ap

p}

Regular MPC (),
PE-MPC with ρ = 0.5 ()
Minimum time MPC-X ()

Receeding horizon formulation: Simulation study

Algorithm Varu Var y N

MPC-X, minimum time 0.203 0.146 82
PE-MPC, ρ = 0.5 0.175 0.120 211

MPC-X experimental study: Let’s travel
2018-05-20 Google Maps

https://www.google.co.za/maps/dir/Secunda,+Mpumalanga//@-15.2527053,17.5566443,4878321m/data=!3m1!1e3!4m9!4m8!1m5!1m1!1s0x1eeb12dc232c6f9b:0xd5e8665e3c84809!2m2!1d29.1913918!2d-26.5157792!1m0!3e0?hl=

Imagery ©2018 Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Landsat / Copernicus, PGC/NASA, U.S. Geological Survey, Map data ©2018 1000 km

Secunda, South Africa
2018-05-20 Google Maps

https://www.google.co.za/maps/dir/Secunda,+Mpumalanga//@-26.5456783,29.1363224,2925a,35y,90h,38.61t/data=!3m1!1e3!4m9!4m8!1m5!1m1!1s0x1eeb12dc232c6f9b:0xd5e8665e3c84809!2m2!1d29.1913918!2d-26.5157792!1m

Imagery ©2018 DigitalGlobe, DigitalGlobe, Map data ©2018 AfriGIS (Pty) Ltd, Google 200 m

SASOL Synthetic Fuels Refinery

Synfuels Catalytic Cracker (SCC)

Depropanizer

Depropanizer

..

Feed Surge
Drum

.....

U23

.

U223

.

U80

.

U285

..

SP 2

.

MV4

.

SP 1

.

To CatPoly

..

SP 4

..

Tray 56

.

Tray 39 (Side draw)

.

Tray 34 (Feed)

.

Depropanizer

.

Tray 19

.

Tray 1

.

Buffer

..

SP 3

.

MV1

.

Condenser

..

Liquid
Dryer

.

SP 6

.

SP 5

.

MV 2

.

Water cooler

.

Reboiler

..

SP 8

.

SP 7

.

MV 3

.

To CatPoly

CV1

Depropanizer

Separates three-carbon hydrocarbons (C3) from four carbon
hydrocarbons (C4)

Objective: Set point for CV1=C4 concentration in side draw

MV2: Side draw to feed ratio

MV3: Column differential pressure

Performance drop obtained by changing poles of model

Excitation level manually controlled

Depropanizer

Separates three-carbon hydrocarbons (C3) from four carbon
hydrocarbons (C4)

Objective: Set point for CV1=C4 concentration in side draw

MV2: Side draw to feed ratio

MV3: Column differential pressure

Performance drop obtained by changing poles of model

Excitation level manually controlled

Depropanizer

Separates three-carbon hydrocarbons (C3) from four carbon
hydrocarbons (C4)

Objective: Set point for CV1=C4 concentration in side draw

MV2: Side draw to feed ratio

MV3: Column differential pressure

Performance drop obtained by changing poles of model

Excitation level manually controlled

Depropanizer: MPC-X experiment Plant experiments | 107

.....
250

.
500

.
750

.
1000

.
1250

.0 .
0.25

.

0.5

.

0.75

.

1

.

Time (min)

.

M
V

1
(%

)

..

..
250

.
500

.
750

.
1000

.
1250

.0 .
200

.

400

.

600

.

800

.

Time (min)

.

C
V

1
(p

pm
)

..

..
250

.
500

.
750

.
1000

.
1250

.52 .
54

.

56

.

58

.

60

.

62

.

Time (min)

.

M
V

2
(%

)

..

..
250

.
500

.
750

.
1000

.
1250

.34 .

36

.

38

.

40

.

Time (min)

.

M
V

3
(k

Pa
)

Figure 6.9 e excitation signals generated by MPC-X in the experiment closed-loop
reidentification experiment of the plant. e two signals important for the control, MV 2
and 3, are excited while MV 1, which is typically not used by the controller, is not excited.
e scale for MV 1 covers the full variable range in the MPC and the changes in the signal
value are due to operator manipulations and not to MPC-X.

Depropanizer: Model fit
Open loop data

0 100 200 300 400 500 600
−800
−400

0
400

Time (min)

CV
1
(p
pm

)

Closed loop data

300 400 500 600 700 800 900
−300

0
300
600

Time (min)

CV
1
(p
pm

)

The plant output ()
Model identified in open-loop ()
Model identified in closed-loop MPC-X experiment ()

Depropanizer: Closed loop performance

Variance

Model CV 1 MV5

Before MPC-X 95×103 34×107

After MPC-X model update 36×103 37 ×107

MV5 = C4 content in the feed

MPC-X: Summary

Sample version of Information Application Inequality added as
a matrix inequality constraint in MPC

Convex relaxation

Current limitation: Output error models (disturbances not
modeled)

MPC-X: Summary

Sample version of Information Application Inequality added as
a matrix inequality constraint in MPC

Convex relaxation

Current limitation: Output error models (disturbances not
modeled)

MPC-X: Summary

Sample version of Information Application Inequality added as
a matrix inequality constraint in MPC

Convex relaxation

Current limitation: Output error models (disturbances not
modeled)

Outline

Application oriented experiment design

Output error models

The impact of optimal experiments on the identification problem

Computing the optimal input

Experimental results

Active application oriented learning

Application oriented dual control

Summary

Outline

Application oriented experiment design

Output error models

The impact of optimal experiments on the identification problem

Computing the optimal input

Experimental results

Active application oriented learning

Application oriented dual control

Summary

What have we learnt?

A framework for experiment design where the application is
taken into account

The optimal experiment matches the identification criterion to
the performance degradation using parsimonious excitation

(The let sleeping dogs lie paradigm)
Simplifies the identification problem
Active application oriented learning practical implementation
Adding the Information Application Inequality to an optimal
control problem leads to dual control

What have we learnt?

A framework for experiment design where the application is
taken into account
The optimal experiment matches the identification criterion to
the performance degradation using parsimonious excitation

(The let sleeping dogs lie paradigm)

Simplifies the identification problem
Active application oriented learning practical implementation
Adding the Information Application Inequality to an optimal
control problem leads to dual control

What have we learnt?

A framework for experiment design where the application is
taken into account
The optimal experiment matches the identification criterion to
the performance degradation using parsimonious excitation

(The let sleeping dogs lie paradigm)
Simplifies the identification problem

Active application oriented learning practical implementation
Adding the Information Application Inequality to an optimal
control problem leads to dual control

What have we learnt?

A framework for experiment design where the application is
taken into account
The optimal experiment matches the identification criterion to
the performance degradation using parsimonious excitation

(The let sleeping dogs lie paradigm)
Simplifies the identification problem
Active application oriented learning practical implementation

Adding the Information Application Inequality to an optimal
control problem leads to dual control

What have we learnt?

A framework for experiment design where the application is
taken into account
The optimal experiment matches the identification criterion to
the performance degradation using parsimonious excitation

(The let sleeping dogs lie paradigm)
Simplifies the identification problem
Active application oriented learning practical implementation
Adding the Information Application Inequality to an optimal
control problem leads to dual control

Acknowledgements

Former PhD-students: Kristian Lindqvist, Henrik Jansson,
Jonas Mårtensson, Märta Barenthin, Christian Larsson, Afrooz
Ebadat, Mariette Annergren

Xavier Bombois, László Gerencsér, Ali Mesbah, Per-Erik
Modén, Cristian Rojas, Paul Van den Hof, Bo Wahlberg

Active Application Oriented Learning

THANK YOU!!!

	Application oriented experiment design
	Output error models
	The impact of optimal experiments on the identification problem
	Computing the optimal input
	Experimental results
	Active application oriented learning
	Application oriented dual control
	Summary

