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The problem Ogunnaike 1996: 
There is 
abundant 
evidence in 
industrial 
practice that 
when modeling 
for control is 
not based on 
criteria related 
to the actual 
end use, the 
results can 
sometimes be 
quite 
disappointing 

Main objective 
Predictable performance 

 

The Problem 

Controller 

Ogunnaike 1996: 

... obtaining the 
process model 
is the single 
most time 
consuming task 
in the 
application of 
model based 
control 
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An application example: MPC of a DC-motor
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Input: Voltage V
Output: Angle φL
Model parameters θ: Resistance R, Moment of inertia JL,
Elasticity K, ...
True parameters: θo



An application example: MPC of a DC-motor

Ideal response: yt(θo) - true parameters used in MPC

Actual response: yt(θ) – parameter θ used in MPC

Performance degradation /Set of acceptable models

Vapp(θ) = 1
N

N∑
t=1

(yt(θo)− yt(θ))2

Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
(γ = accuracy)
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Summary of concepts

Performance degradation for application: Vapp(θ)

Set of acceptable models: Eapp =
{
θ : Vapp(θ) ≤ 1

γ

}
Identification: Produce θ̂N ∈ Eapp ⊂ Rn (N = sample size)

Experiment design objective:

Experimental cost

Least-costly identification
For example: Experimental cost = input energy

Application oriented experiment design
minNE[u2

t ]
s.t. θ̂N ∈ Eapp ⊂ Rn

An optimal experiment design problem
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System identification

So

e

C

r u y

Random innovations with variance λe

Stationary signals
True system in the model set: So ⇔ θo (to be relaxed later)
Prediction error identification:

I Prediction error: εt(θ) = yt − ŷt(θ)
I θ̂N = arg min

∑N
t=1 ε

2
t (θ)
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Application oriented experiment design

Vid(θ) = E[ε2
t (θ)]− λe

High accuracy γ (implies large sample size N)
√
N
(
θ̂N − θo

)
∼ AsN

(
0, 2λeV ′′id(θo)−1)

Cannot guarantee θ̂N ∈ Eapp

Relaxation: Use standard (asymptotic) confidence ellipsoid Eid

Probability(θ̂N ∈ Eid) ≈ α (e.g. 99%)

Application oriented experiment design
minNE[u2

t ]
s.t. Eid ⊆ Eapp ⊂ Rn
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Output error models

True system: yt = Go(q)ut + et, open loop

Model: yt = G(q, θ)ut + et

PE: εt(θ) = yt −G(q, θ)ut

= (Go(q)−G(q, θ))ut + et

Vid(θ) = E[ε2
t (θ)]− λe

= E[((Go(q)−G(q, θ))ut)2] + E[e2
t ]− λe

= 1
2π

∫ π

−π
Φid
u (ejω)

∣∣∣Go(ejω)−G(ejω, θ)
∣∣∣2 dω
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Output error models

Application oriented experiment design

minNE[u2
t ]

= 1
2π

∫ π

−π
NΦid

u (ejω) dω

s.t. NVid(θ)︸ ︷︷ ︸
1

2π

∫ π
−π NΦid

u(ejω) |Go(ejω)−G(ejω ,θ)|2 dω

≥ λeγnVapp(θ), ∀θ ∈ Eapp

Minimization with respect to energy density spectrum NΦid
u

Optimization tries to achieve

NVid(θ) = λe γ nVapp(θ), ∀θ ∈ Eapp

Identification cost matched to performance degradation
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Model Reference Control

Go
yt

et

−C

ut

Controller C = C(G), G output error model

Desired sensitivity function: Sξ
Achieved sensitivity function: S(G) = 1

1+C(G)Go

Performance degradation: Vapp(G) :=
∥∥∥S(G)−Sξ

Sξ
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Model Reference Control

minNE[u2(t)]
s.t. NVid(θ) ≥ γλen Vapp(θ)

Matching condition: NVid(θ) = γλenVapp(θ)

⇒ NΦid
u = γλenΦdesired

u

Experimental conditions during identification should be a
scaled version of the desired operating conditions!
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Application oriented experiment design: Summary

Application oriented experiment design
Aims at achieving

N Vid(θ) = λe γ n Vapp(θ)

using minimum energy

Typically leads to similar operating conditions during
identification as the ones desired during the application
To achieve this requires parsimonious excitation:

i) System properties important to the application should be
visible in the data

ii) System properties not important to the ap-
plication should not be visible in the data, unless necessary for i).

(The let sleeping dogs lie paradigm)

As a result, the entire system may not have to be identified!

I Choice of model structure less critical
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Computations: The Information Application Inequality

The design constraint can be written as

Eid ⊆ Eapp,

or
N Vid(θ) ≥ λeγn Vapp(θ), ∀θ ∈ Eapp

but also as
IN1 (θo) �

γ

2nV
′′

app(θo)

where IN1 (θo) is the Fisher information = NV ′′id (θo)
2λe

The Information Application Inequality

Recall: Vid linear in the input spectrum

Information Application Inequality is an LMI in the input spectrum
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Experimental results: Water tank process
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Optimization problem depends on the unknown system!
Solutions:

I Robust experiment design
(e.g. Rojas, Welsh, Goodwin, Feuer 2007)

I Adaptive (or sequential) experiment design

⇒ Active application oriented learning
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Key questions:
Convergence?
Accuracy?

Theorem
True linear time-invariant system in the model set
System stable

⇒ θ̂(t) has the same asymptotic accuracy as the off-line estimate
that uses data collected under the optimal experimental conditions
(using knowledge of θo)
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Active application oriented learning

What happens when true system is not in the model set?



Example: Non-minimum phase zero estimation
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True system

Zero estimate



Example: Non-minimum phase zero estimation

True system: yt = (q − 3)(q − 0.1)(q − 0.2)(q + 0.3)
q4(q − 0.5) ut + q

q − 0.8e
o
t

Model: yt = θ1q + θ2
q2 ut + et

True system

Zero estimate



Example: Non-minimum phase zero estimation

True system: yt = (q − 3)(q − 0.1)(q − 0.2)(q + 0.3)
q4(q − 0.5) ut + q

q − 0.8e
o
t

Model: yt = θ1q + θ2
q2 ut + et

True system

Zero estimate



Example: Non-minimum phase zero estimation

True system: yt = (q − 3)(q − 0.1)(q − 0.2)(q + 0.3)
q4(q − 0.5) ut + q

q − 0.8e
o
t

Model: yt = θ1q + θ2
q2 ut + et

True system Zero estimate



Outline

Application oriented experiment design

Output error models

The impact of optimal experiments on the identification problem

Computing the optimal input

Experimental results

Active application oriented learning

Application oriented dual control

Summary



Application oriented dual control

min
Input spectrum

NE[u2
t ], s.t. IN1 (θo) �

γn

2 V ′′app(θo)

Idéa: Replace cost function with control objective.

Policy (control rule): π = (π1, π2, . . .)

Initial state distribution: β(x)

Instantaneous cost: c(xt, ut) e.g. yTt Qyt + utSut

Expected average cost: Cβ(π,N) = 1
N

∑N
t=1 Eπβ {c(xt, ut)}

Constraints: xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm
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Markov Decision Process formulation

Infinite horizon cost: Cβ(π) = lim supN→Cβ(π,N)

Reward: Iβ(π, θ) , limN→∞
1
N I

N
1 (θ) (per sample information)

Theory based on discretized state and action spaces

⇒ State x & input u take only finite number of values

⇒ Need to approximate state-space description

⇒ Transition probabilities: pxx̄(u) = P{xt+1 = x̄ |xt = x, ut = u}

Can be computed based on geometry of discretization and
knowledge of distributions of disturbances

Policy: πt(x, u) = P{ut = u |xt = x}
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Markov Decision Process formulation: Implementation

min
π

Cβ(π)

s.t. NIβ(π, θo) �
γn

2 V ′′app(θo)

xt ∈ X ⊆ Rn, yt ∈ Y ⊆ Rp, ut ∈ U ⊂ Rm

Solution?

Define zxu as the probability of being in state x and taking action u

Occupancy measure

MDP problem is a semi-definite program in {zxu}.
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Markov Decision Process formulation: Simulation study
{
xt+1 = −θ1xt + θ2ut − θ1vt,

yt = xt + vt,

vt: Gaussian white noise with variance 1× 10−3

θo = [0.5, 0.5]T

x split in 51 regions.

u split in 21 regions.

ct(x, u) = 2y2
t + u2

t

0.49 0.5 0.5 0.51 0.51

0.5

0.5

0.51

θ1

θ 2

Set of acceptable models: Blue solid ellipse.

Desired confidence ellipsoid: Red dashed ellipse

Crosses: 100 Monte Carlo simulations using the MDP controller
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Markov Decision Process formulation: Summary

Elegant and powerful formulation

Leads to a semi-definite program

but suffers from the curse of dimensionality due to
discretization of state-space
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Receeding horizon formulation

Cost at time t:

Ct =
F∑
k=1

ct(xk, uk) =
F∑
k=1
‖yk+1 − rt+k+1‖2Q +

F∑
k=1
‖uk‖2S

minimize
{uk}Fk=1

Ct

subject to x1 = x̂t,

xk+1 = A(θo)xk +B(θo)uk, yk = C(θo)xk
uk ∈ U , xk ∈ X , yk ∈ Y

It+NI1 (θo) � κt
γn

2 V ′′app(θ0)

Scaling κt monotonically increasing from 0 to 1 at t = N −NI

Major problems:
θo unknown
Data not stationary & feedback
⇒ Cannot use spectrum as design variable
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Receeding horizon formulation: Implementation

Approximations:

Initial estimate θ̂ replaces θo
IN1 (θ̂) sample approximation of IN1 (θo)

Quadratic in design variables ū =
[
u1, . . . , uF

]T
Lifting: Introduce U = ūūT ⇔

[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time (maximize κt)
MPC-X: Model Predictive Control with eXperimental constraints
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Receeding horizon formulation: Alternative approaches

yt =
nb∑
k=1

θkut−k + et = θTφt + et,

φt =
[
ut−1 · · · ut−nb

]T
Persistence of excitation condition:

∑t+1+F
k=t−P φkφ

T
k � ρI

MPCI (Genceli and Nikolaou (1996)): P = 0
Multiobjective MPC with identification (Aggelogiannaki and
Sarimveis (2006)): P = 0
Dual control by information maximization (Rathhouský and
Havlena (2011)): P = 0
PE-MPC (Marafioti (2010)): F = 0

Do not take application into account explicitly
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Receeding horizon formulation: Simulation study

Pump 1 Pump 2

Valve 1 Valve 2

Tank 1 Tank 2

Tank 4Tank 3



Receeding horizon formulation: Simulation study


xt+1 =

[
θ3 θ4
1 0

]
xt +

[
4.5
0

]
ut,

yt =
[
θ1 θ2

]
xt + et lower tank level

θo =
[
0.12 0.059 0.74 −0.14

]T
Noise var.: 0.01.

N = 200, F = 5

Performance degradation cost: Vapp(θ) =
∑T
t=1 ‖yt(θo)− yt(θ)‖22

PE-MPC: ρ = 0.5, P = 5, F = 0

MPC-X: Minimum time formulation
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Receeding horizon formulation: Simulation study
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Receeding horizon formulation: Simulation study
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Receeding horizon formulation: Simulation study
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Receeding horizon formulation: Simulation study

Algorithm Varu Var y N

MPC-X, minimum time 0.203 0.146 82
PE-MPC, ρ = 0.5 0.175 0.120 211



MPC-X experimental study: Let’s travel
2018-05-20 Google Maps

https://www.google.co.za/maps/dir/Secunda,+Mpumalanga//@-15.2527053,17.5566443,4878321m/data=!3m1!1e3!4m9!4m8!1m5!1m1!1s0x1eeb12dc232c6f9b:0xd5e8665e3c84809!2m2!1d29.1913918!2d-26.5157792!1m0!3e0?hl=

Imagery ©2018 Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Landsat / Copernicus, PGC/NASA, U.S. Geological Survey, Map data ©2018 1000 km 



Secunda, South Africa
2018-05-20 Google Maps

https://www.google.co.za/maps/dir/Secunda,+Mpumalanga//@-26.5456783,29.1363224,2925a,35y,90h,38.61t/data=!3m1!1e3!4m9!4m8!1m5!1m1!1s0x1eeb12dc232c6f9b:0xd5e8665e3c84809!2m2!1d29.1913918!2d-26.5157792!1m

Imagery ©2018 DigitalGlobe, DigitalGlobe, Map data ©2018 AfriGIS (Pty) Ltd, Google 200 m 



SASOL Synthetic Fuels Refinery



Synfuels Catalytic Cracker (SCC)

Depropanizer
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Depropanizer

Separates three-carbon hydrocarbons (C3) from four carbon
hydrocarbons (C4)

Objective: Set point for CV1=C4 concentration in side draw

MV2: Side draw to feed ratio

MV3: Column differential pressure

Performance drop obtained by changing poles of model

Excitation level manually controlled
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Depropanizer: MPC-X experiment Plant experiments | 107
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Figure 6.9 e excitation signals generated by MPC-X in the experiment closed-loop
reidentification experiment of the plant. e two signals important for the control, MV 2
and 3, are excited while MV 1, which is typically not used by the controller, is not excited.
e scale for MV 1 covers the full variable range in the MPC and the changes in the signal
value are due to operator manipulations and not to MPC-X.



Depropanizer: Model fit
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Depropanizer: Closed loop performance

Variance

Model CV 1 MV5

Before MPC-X 95×103 34×107

After MPC-X model update 36×103 37 ×107

MV5 = C4 content in the feed
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Active Application Oriented Learning
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