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System identification

Random innovations with variance A,
Stationary signals
True system in the model set: S, < 6, (to be relaxed later)

Prediction error identification:
» Prediction error: £,(6) = y: — 4:(0)
> Oy = argminztlil e2(0)
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Via(0) = E[ef(0)] — A
High accuracy v (implies large sample size N)

VN (fx = 0,) ~ ASN (0,227 (0,) 1)

o Cannot guarantee Ay € Eapp

@ Relaxation: Use standard (asymptotic) confidence ellipsoid £
Probability (Ay € &q4) ~ a (e.g. 99%)
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Application oriented experiment design
min NE[u?]
s.t. &g C gapp Cc R"

can approximately be formulated as
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Application oriented experiment design

min NE[u?] = / N9/ dw
s.t. NVid(G) > AeYnVapp(0), VO € Eqpp
————

% f:rﬂ- N<I>I5| (ejw) |Go(€jw)—G(ejw,0)|2 dw

@ Minimization with respect to energy density spectrum N ®i

@ Optimization tries to achieve

N‘/ld(e) = Ae Y n‘/;pp((g), Vo € gapp

Identification cost matched to performance degradation
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Desired sensitivity function |S§|
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e Controller C = C(G), G output error model
@ Desired sensitivity function: S¢

@ Achieved sensitivity function: S(G) = m

Magnitude (dB)

2
@ Performance degradation: V,pp(G) := H%&_S{‘L
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Model Reference Control

min NE[u?(t)]
s.t. NVig(0) > vAen Vapp(0)

@ Matching condition: NViq(0) = yAenVapp(0)
= N®HY = y) nodesired

@ Experimental conditions during identification should be a
scaled version of the desired operating conditions!
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Application oriented experiment design

Aims at achieving
N Vig(0) = Ae v 1 Vapp(0)

using minimum energy

@ Typically leads to similar operating conditions during
identification as the ones desired during the application
@ To achieve this requires parsimonious excitation:

i) System properties important to the application should be
visible in the data
ii) System properties not important to the ap-
plication should not be visible in the data, unless necessary for i).
(The let sleeping dogs lie paradigm)

@ As a result, the entire system may not have to be identified!
» Choice of model structure less critical
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Computations: The Information Application Inequality

The design constraint can be written as

Ea C gappa or
N Vig(0) > AXeyn Vapp(0), V0 € Eapp
but also as 5
T (8.) = - Vino(60)

where TV (0,) is the Fisher information = N‘gd)\

The Information Application Inequality
Recall: Viq linear in the input spectrum

Information Application Inequality is an LMI in the input spectrum
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@ Optimal experiment design = Input spectrum @if
@ Spectral factorization: ®4(e/%) = |R,(e/)|> e

white

o n : n
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Experimental results: Water tank process

Tank 3 Tank 4
v [ 1 [ 1 v
Valve 1 (I%:“ “:%DValve 2
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Experimental results: Water tank process

Water level in tank 1 (cm)

Water level in tank 2 (cm)

0 50 100 1%0
Time (s)
(b)

MPC: Black: based on AOID-model. Red: based on white noise excitation
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Application oriented experiment design
min NE[u? ()]
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@ Optimization problem depends on the unknown system!
@ Solutions:

» Robust experiment design
(e.g. Rojas, Welsh, Goodwin, Feuer 2007)

» Adaptive (or sequential) experiment design
= Active application oriented learning
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Active application oriented learning

Key questions:
o Convergence?
@ Accuracy?

Theorem
o True linear time-invariant system in the model set
@ System stable
= é(t) has the same asymptotic accuracy as the off-line estimate

that uses data collected under the optimal experimental conditions
(using knowledge of 0,)
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What happens when true system is not in the model set?
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Example: Non-minimum phase zero estimation

(¢ —3)(g—0.1)(g — 0.2)(¢ +0.3) q
True system: y; = Uy ef
q*(qg —0.5) q—08"
0 0
Model: y; = 161—;‘2% + e
q
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Application oriented experiment design

Output error models

The impact of optimal experiments on the identification problem
Computing the optimal input

Experimental results

Active application oriented learning

Application oriented dual control

Summary
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Application oriented dual control

min NE[u?], st I (6,) = —V” (0o)

Input spectrum app
Idéa: Replace cost function with control objective.
Policy (control rule): @ = (71, ma,...)
Initial state distribution: 3(z)
Instantaneous cost: ¢(x¢, ut) e.g. vl Qui + upSuy

Expected average cost: Cg(m,N) = 3 Ly, E% {c(ze, ue) }
Constraints: ; e Y CR", yy € Y C RP, us €U C R™
min Cs(m,N)
st. IN(0,) = Va'{,p(e ) Reward
xteXgR”, yw €YCRP, yyeld CR™
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Application oriented dual control

mﬂin Cg(ﬂ',N)
n
st IN(6,) = 7v‘.j,';,p(e)o)
e XCR", yy € YC R, yed CR™

We will look at two approaches two solve this problem:

@ Markov Decision Process (MDP) formulation

@ Receeding horizon formulation: MPC-X
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Markov Decision Process formulation

Infinite horizon cost: Cg(m) = limsupy_, Cg(m, N)

Reward: Zg(m,0) £ limy o0 +Z3' (6) (per sample information)
Theory based on discretized state and action spaces

= State x & input u take only finite number of values

= Need to approximate state-space description

= Transition probabilities: pgz(u) = P{zi1 = = |z = x,up = u}

Can be computed based on geometry of discretization and
knowledge of distributions of disturbances

Policy: mi(z,u) = P{us = u|zy = =}
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Markov Decision Process formulation: Implementation

min  Cp()
yn
s.t. NZs(m,0,) = 71/;’,',p(90)
neXCR", yu, €e YCRP, yueld CR™

Solution?
Define z,, as the probability of being in state x and taking action u

Occupancy measure

MDP problem is a semi-definite program in {zy,}.
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Markov Decision Process formulation: Simulation study
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Tip1 = —012¢ + Ooup — vy,
Yt = Tt + Vg,

ve: Gaussian white noise with variance 1 x 1073
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x split in 51 regions, ¢ |
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Markov Decision Process formulation: Simulation study

{ Tip1 = —012¢ + Ooup — vy,

Yt = Tt + V¢,

ve: Gaussian white noise with variance 1 x 1073

0, = [0.5,0.5]7 0.51

z split in 51 regionso () = |-

u split in 21 regions.

elmyu) =2+ OO ST
049 0.5 0.5 0.51 0.51

01
Set of acceptable models: Blue solid ellipse.
Desired confidence ellipsoid: Red dashed ellipse

Crosses: 100 Monte Carlo simulations using the MDP controller
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Markov Decision Process formulation: Summary

o Elegant and powerful formulation
@ Leads to a semi-definite program

@ but suffers from the curse of dimensionality due to
discretization of state-space
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Receeding horizon formulation

Cost at time ¢:
F

F
Ce =Y ci(wp, up) Z ka1 = recralln + Y lukl%
k=1

B!

k=1 k=1
minimize  C}
{ur}i_,
subject to 1 = Ty,
Tp+1 = A(0o)zk + B(0o)uk, yx = C(0o)zy,
ur €U, :L’kEX yp € Y
1 (8,) = Va’{,p(ﬂo)

Scaling x; monotonically increasing from Q0 to 1 at ¢t = N — Ny

Major problems:
@ 0, unknown

@ Data not stationary & feedback

= Cannot use spectrum as design variable
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Receeding horizon formulation: Implementation

Approximations:
o Initial estimate replaces 6,

o IN(0) sample approximation of Z¥ (6,)
T
Quadratic in design variables u = [ul, 7} F}
Lifting: Introduce U = uu’ <

U
al 1

U u
=0, rank [ET 1]:1

Convex relaxation: Drop the rank constraint

Alternative formulation: Minimum time (maximize k;)
MPC-X: Model Predictive Control with eXperimental constraints



Receeding horizon formulation: Alternative approaches

np
Yy = Z Orur—i + er = 07 ¢y + ey,
k=1



Receeding horizon formulation: Alternative approaches

ny
Yt = Z Opur—i + e =0Ty +er, = [Ut—l Cee o Uty
k=1



Receeding horizon formulation: Alternative approaches

ny
Yt = Z Opur—i + e =0Ty +er, = [Ut—l Cee o Uty
k=1

Persistence of excitation condition: Z';;ltfg okt = pl



Receeding horizon formulation: Alternative approaches

np
Y = Z Oy + e = 0T ¢y + e, ¢ = {Utfl Ce U,
k=1
Persistence of excitation condition: Z',;J;J_rg et = pl
e MPCI (Genceli and Nikolaou (1996)): P =0
@ Multiobjective MPC with identification (Aggelogiannaki and
Sarimveis (2006)): P =0
@ Dual control by information maximization (Rathhousky and
Havlena (2011)): P =0
e PE-MPC (Marafioti (2010)): FF =0



Receeding horizon formulation: Alternative approaches

np
Y = Z Oy + e = 0T ¢y + e, ¢ = {Utfl Ce U,
k=1
Persistence of excitation condition: Z',;J;J_rg et = pl
e MPCI (Genceli and Nikolaou (1996)): P =0
@ Multiobjective MPC with identification (Aggelogiannaki and
Sarimveis (2006)): P =0
@ Dual control by information maximization (Rathhousky and
Havlena (2011)): P =0
e PE-MPC (Marafioti (2010)): FF =0

Do not take application into account explicitly



Receeding horizon formulation: Simulation study

Tank 3 Tank 4
v [ 1 [ 1 v
Valve 1 (I%:“ “:%DValve 2
Tank 1 Tank 2
Pump 1 :—: :-: Pump 2
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Receeding horizon formulation: Simulation study

O3 0,4 4.5
Tl = [ | Tt + 0 | ¥
Y = {91 92} s+ e; lower tank level

T
6o =[0.12 0.059 074 —0.14]  Noise var.: 0.01.
N =200, F=5
Performance degradation cost: Vapp(0) = 3571 [|4:(60) — y:(0) 13
PE-MPC: p=0.5, P=5, F =0

MPC-X: Minimum time formulation



Receeding horizon formulation: Simulation study

Output y; Output ¢

Output v

=]
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Receeding horizon formulation: Simulation study

20 140 160 180 20

_.1 | | | |
20 40 60 80 100 1
Time (sample)

S 05|
g of
2 05

| |

20 140 160 180 200

_1 | | | |
20 40 60 80 100 1
Time (sample)

1
S 05
5 0 :
£ -05 .
|
20 140 160 180 20

| | |
20 40 60 80 100 1
Time (sample)



Receeding horizon formulation: Simulation study

[ | | | | | |
20 40 60 80 100 120 140 160 180 200
Time (sample)

@ Regular MPC (—),
e PE-MPC with p =0.5 (—)
@ Minimum time MPC-X (—)



Receeding horizon formulation: Simulation study

Algorithm Varu Vary N

MPC-X, minimum time 0.203 0.146 82
PE-MPC, p=0.5 0.175 0.120 211




MPC-X experimental study: Let's travel

iow Afrlca South’ Sudan
W Cameroon Repubﬁc’ =,

L "
Equatorial 2 S
HGuinea

K eny aqt_Somalla

# 3
ch. Wrivanda
- ’. Brrundi -

P ‘. Tanzania

Zambia i

Mozambique
Zimbabwe

Madagascar




Secunda, South Africa




SASOL Synthetic Fuels Refinery




Synfuels Catalytic Cracker (SCC)




Depropanizer

MV1

/—’_'\Condcnser ]

Tray 56

Tray 39 (Side draw)

U23 :
U223 1
Uso Feed Surge : Tray 34 (Feed)
Drum [ S A
U285
T ' Depropanizer
3 MV 4 N I
@ @ Tray 19
To CatPoly
Reboiler
: {>§ Tray 1
. To CatPoly
L 7 Buffer ‘Water cooler



Separates three-carbon hydrocarbons (C3) from four carbon
hydrocarbons (Cy)

Objective: Set point for CV1=C4 concentration in side draw
MV2: Side draw to feed ratio

MV3: Column differential pressure
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Separates three-carbon hydrocarbons (C3) from four carbon
hydrocarbons (Cl)

Objective: Set point for CV1=C4 concentration in side draw
MV2: Side draw to feed ratio

MV3: Column differential pressure

Performance drop obtained by changing poles of model

Excitation level manually controlled



Depropanizer: MPC-X experiment

MV 2 (%) MV 1 (%) CV1 (ppm)

MV 3 (kPa)

800
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400

200

I
250

I
500

I
750

I
1000

1250
Time (min)
T T T
| | | | |
250 500 750 1000 1250

Time (min)

250

500

750

i
1000

I
1250

‘Time (min)
T

250

500

I
750

Time (min)

|
1000

I
1250




Depropanizer: Model fit

Open loop data

E 400
£ 0
—  —400
5 —800 |- i | | | | |
0 100 200 300 400 500 600
Time (min)

Closed loop data

E 600
£ 300
— 0
S —300 E | | | ) ‘ -
300 400 500 600 700 800 900
Time (min)

@ The plant output (—)
@ Model identified in open-loop (—)
@ Model identified in closed-loop MPC-X experiment (—)



Depropanizer: Closed loop performance

Variance
Model Cvl1 MV 5

Before MPC-X 95x10%  34x107
After MPC-X model update 36x10% 37 x107

MV 5 = C4 content in the feed
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MPC-X: Summary

@ Sample version of Information Application Inequality added as
a matrix inequality constraint in MPC

@ Convex relaxation

o Current limitation: Output error models (disturbances not
modeled)
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What have we learnt?

A framework for experiment design where the application is
taken into account

The optimal experiment matches the identification criterion to
the performance degradation using parsimonious excitation
(The let sleeping dogs lie paradigm)

Simplifies the identification problem

Active application oriented learning practical implementation

Adding the Information Application Inequality to an optimal
control problem leads to dual control
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